Ultrahigh Carrier Mobility in Two-Dimensional IV–VI Semiconductors for Photocatalytic Water Splitting

Two-dimensional materials have been developed as novel photovoltaic and photocatalytic devices because of their excellent properties. In this work, four δ-IV–VI monolayers, GeS, GeSe, SiS and SiSe, are investigated as semiconductors with desirable bandgaps using the first-principles method. These δ-...

Full description

Bibliographic Details
Main Authors: Zhaoming Huang, Kai Ren, Ruxin Zheng, Liangmo Wang, Li Wang
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/10/4126
Description
Summary:Two-dimensional materials have been developed as novel photovoltaic and photocatalytic devices because of their excellent properties. In this work, four δ-IV–VI monolayers, GeS, GeSe, SiS and SiSe, are investigated as semiconductors with desirable bandgaps using the first-principles method. These δ-IV–VI monolayers exhibit exceptional toughness; in particular, the yield strength of the GeSe monolayer has no obvious deterioration at 30% strain. Interestingly, the GeSe monolayer also possesses ultrahigh electron mobility along the <i>x</i> direction of approximately 32,507 cm<sup>2</sup>·V<sup>−1</sup>·s<sup>−1</sup>, which is much higher than that of the other δ-IV–VI monolayers. Moreover, the calculated capacity for hydrogen evolution reaction of these δ-IV–VI monolayers further implies their potential for applications in photovoltaic and nano-devices.
ISSN:1420-3049