Pressure-Arching Characteristics of Fractured Strata Structure during Shallow Horizontal Coal Mining

It is an important problem for the alternated strong and weak roof weighting to threat the safety of working face during shallow coal mining and the total thickness breaking of the thin bedrock to cause the serious ground subsidence. To reveal the mechanism of the abnormal mining damage, the pressur...

Full description

Bibliographic Details
Main Authors: Yanhai Zhao, Shuren Wang, Youfeng Zou, Xuchun Wang, Bingqiang Huang, Xingui Zhang
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2018-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/304788
Description
Summary:It is an important problem for the alternated strong and weak roof weighting to threat the safety of working face during shallow coal mining and the total thickness breaking of the thin bedrock to cause the serious ground subsidence. To reveal the mechanism of the abnormal mining damage, the pressure-arching rule in overlying strata was studied. Based on the monitoring data of the typical shallow coal working face, the mechanical models of the symmetrical stress arch, the squeezed arch and the hinged structure of the fractured strata were established, and the difference of the load bearing capacity between the structures and the influencing factors was analysed by the deduced formula calculation. Then the evolution characteristics of the pressure-arch in the fractured strata were revealed by the numerical simulation analysis. The results show that the global pressure-arch of multilayer strata always exits in the surrounding rock and moves forward with continuous mining. The single pressure-arch and hinged structure are formed in each stratum under the global pressure-arch. The pressure-arch enables the fractured strata to carry load efficiently, and the instability of the pressure-arch can cause strong roof weighting and ground subsidence. These conclusions provide a theoretical reference for the stability control of the overlying strata structure under shallow coal mining.
ISSN:1330-3651
1848-6339