Intelligent Control for Voltage Regulation in the Distribution Network Equipped with PV Farm

A combined PSO-ANN control is proposed in this work to achieve the best voltage regulation in a distribution network, based on quick response and minimum average voltage deviation. The Jordanian Sabha Distribution Network (JSDN) with PV Farms is used as a real case study to examine a voltage variati...

Full description

Bibliographic Details
Main Authors: Jasim Ghaeb, Samer Salah, Firas Obeidat
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/1/360
Description
Summary:A combined PSO-ANN control is proposed in this work to achieve the best voltage regulation in a distribution network, based on quick response and minimum average voltage deviation. The Jordanian Sabha Distribution Network (JSDN) with PV Farms is used as a real case study to examine a voltage variation issue. Two STATCOMs are used to solve the voltage fluctuation problem on the network’s three buses. The required reactive powers of STATCOMs for voltage regulation during load variation are calculated in offline mode using a particle swarm optimization (PSO) algorithm. Despite its high performance in solving voltage issue in the JSDN network, the PSO controller is unable to react promptly to dynamic changes in the network. An artificial neural network (ANN) is therefore suggested as an online mode controller for quick and efficient voltage regulation. The offline dataset is used to train the ANN for online voltage regulation utilizing the MATLAB-Tool Box. At an average voltage deviation (AVD) of 1.168%; (whereas an acceptable one is 6%), the results revealed the proposed ANN controller’s competence for voltage regulation in the distribution network. Moreover, to find the best position based on an efficient voltage regulation, many sites for STATCOMs are taken into consideration.
ISSN:1996-1073