Fractional heat conduction with finite wave speed in a thermo-visco-elastic spherical shell

This problem deals with the thermo-elastic interaction due to step input of temperature on the stress free boundaries of a homogeneous visco-elastic orthotropic spherical shell in the context of a new consideration of heat conduction with fractional order generalized thermoelasticity. Using the Lapl...

Full description

Bibliographic Details
Main Authors: A. Sur, M. Kanoria
Format: Article
Language:English
Published: Marcílio Alves
Series:Latin American Journal of Solids and Structures
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252014000700005&lng=en&tlng=en
Description
Summary:This problem deals with the thermo-elastic interaction due to step input of temperature on the stress free boundaries of a homogeneous visco-elastic orthotropic spherical shell in the context of a new consideration of heat conduction with fractional order generalized thermoelasticity. Using the Laplace transformation, the fundamental equations have been expressed in the form of a vector-matrix differential equation which is then solved by eigen value approach and operator theory analysis. The inversion of the transformed solution is carried out by applying a method of Bellman et al (1966). Numerical estimates for thermophysical quantities are obtained for copper like material for weak, normal and strong conductivity and have been depicted graphically to estimate the effects of the fractional order parameter. Comparisons of the results for different theories (TEWED (GN-III), three-phase-lag model) have also been presented and the effect of viscosity is also shown. When the material is isotropic and outer radius of the hollow sphere tends to infinity, the corresponding results agree with that of existing literature.
ISSN:1679-7825