Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay

This article addresses the robust dissipativity and passivity problems for a class of Markovian switching complex-valued neural networks with probabilistic time-varying delay and parameter uncertainties. The main objective of this article is to study the proposed problem from a new perspective, in w...

Full description

Bibliographic Details
Main Authors: Qiang Li, Weiqiang Gong, Linzhong Zhang, Kai Wang
Format: Article
Language:English
Published: AIMS Press 2022-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20221068?viewType=HTML
Description
Summary:This article addresses the robust dissipativity and passivity problems for a class of Markovian switching complex-valued neural networks with probabilistic time-varying delay and parameter uncertainties. The main objective of this article is to study the proposed problem from a new perspective, in which the relevant transition rate information is partially unknown and the considered delay is characterized by a series of random variables obeying bernoulli distribution. Moreover, the involved parameter uncertainties are considered to be mode-dependent and norm-bounded. Utilizing the generalized It$ \hat{o} $'s formula under the complex version, the stochastic analysis techniques and the robust analysis approach, the $ (M, N, W) $-dissipativity and passivity are ensured by means of complex matrix inequalities, which are mode-delay-dependent. Finally, two simulation examples are provided to verify the effectiveness of the proposed results.
ISSN:2473-6988