About the Cauchy–Bunyakovsky–Schwarz Inequality for Hilbert Space Operators

The symmetric shape of some inequalities between two sequences of real numbers generates inequalities of the same shape in operator theory. In this paper, we study a new refinement of the Cauchy–Bunyakovsky–Schwarz inequality for Euclidean spaces and several inequalities for two bounded linear opera...

Full description

Bibliographic Details
Main Author: Nicuşor Minculete
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/2/305
Description
Summary:The symmetric shape of some inequalities between two sequences of real numbers generates inequalities of the same shape in operator theory. In this paper, we study a new refinement of the Cauchy–Bunyakovsky–Schwarz inequality for Euclidean spaces and several inequalities for two bounded linear operators on a Hilbert space, where we mention Bohr’s inequality and Bergström’s inequality for operators. We present an inequality of the Cauchy–Bunyakovsky–Schwarz type for bounded linear operators, by the technique of the monotony of a sequence. We also prove a refinement of the Aczél inequality for bounded linear operators on a Hilbert space. Finally, we present several applications of some identities for Hermitian operators.
ISSN:2073-8994