Summary: | High-performance temperature sensing is a key technique in modern Internet of Things. However, it is hard to attain a high precision while achieving a compact size for wireless sensing. Recently, metamaterials have been proposed to design a microwave, wireless temperature sensor, but precision is still an unsolved problem. By combining the high-quality factor (Q-factor) feature of a EIT-like metamaterial unit and the large temperature-sensing sensitivity performance of liquid metals, this paper designs and experimentally investigates an Hg-EIT-like metamaterial unit block for high figure-of-merit (FOM) temperature-sensing applications. A measured FOM of about 0.68 is realized, which is larger than most of the reported metamaterial-inspired temperature sensors.
|