The game of arboricity
Using a fixed set of colors $C$, Ann and Ben color the edges of a graph $G$ so that no monochromatic cycle may appear. Ann wins if all edges of $G$ have been colored, while Ben wins if completing a coloring is not possible. The minimum size of $C$ for which Ann has a winning strategy is called the $...
Main Authors: | Tomasz Bartnicki, Jaroslaw Grytczuk, Hal Kierstead |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2005-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/3428/pdf |
Similar Items
-
(k − 2)-linear connected components in hypergraphs of rank k
by: Florian Galliot, et al.
Published: (2023-11-01) -
On Kerov polynomials for Jack characters (extended abstract)
by: Valentin Féray, et al.
Published: (2013-01-01) -
Staircase Macdonald polynomials and the $q$-Discriminant
by: Adrien Boussicault, et al.
Published: (2008-01-01) -
On the $L(p,1)$-labelling of graphs
by: Daniel Gonçalves
Published: (2005-01-01) -
A product formula for the TASEP on a ring
by: Erik Aas, et al.
Published: (2014-01-01)