Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach

In this article, we establish some of the Pólya–Szegö and Minkowsky-type fractional integral inequalities by considering the Caputo–Fabrizio fractional integral. Moreover, we give some special cases of Pólya–Szegö inequalities.

Bibliographic Details
Main Authors: Asha B. Nale, Vaijanath L. Chinchane, Satish K. Panchal, Christophe Chesneau
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/2/79
_version_ 1827657004857950208
author Asha B. Nale
Vaijanath L. Chinchane
Satish K. Panchal
Christophe Chesneau
author_facet Asha B. Nale
Vaijanath L. Chinchane
Satish K. Panchal
Christophe Chesneau
author_sort Asha B. Nale
collection DOAJ
description In this article, we establish some of the Pólya–Szegö and Minkowsky-type fractional integral inequalities by considering the Caputo–Fabrizio fractional integral. Moreover, we give some special cases of Pólya–Szegö inequalities.
first_indexed 2024-03-09T22:37:13Z
format Article
id doaj.art-ebbc338e64384ce89a8459aef4e159d4
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T22:37:13Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-ebbc338e64384ce89a8459aef4e159d42023-11-23T18:47:21ZengMDPI AGAxioms2075-16802022-02-011127910.3390/axioms11020079Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio ApproachAsha B. Nale0Vaijanath L. Chinchane1Satish K. Panchal2Christophe Chesneau3Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, IndiaDepartment of Mathematics, Deogiri Institute of Engineering and Management Studies, Aurangabad 431005, IndiaDepartment of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, IndiaLMNO, University of Caen Normandie, 14032 Caen, FranceIn this article, we establish some of the Pólya–Szegö and Minkowsky-type fractional integral inequalities by considering the Caputo–Fabrizio fractional integral. Moreover, we give some special cases of Pólya–Szegö inequalities.https://www.mdpi.com/2075-1680/11/2/79Pólya–Szegö inequalityMinkowsky inequalityCaputo–Fabrizio fractional integrals
spellingShingle Asha B. Nale
Vaijanath L. Chinchane
Satish K. Panchal
Christophe Chesneau
Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
Axioms
Pólya–Szegö inequality
Minkowsky inequality
Caputo–Fabrizio fractional integrals
title Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
title_full Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
title_fullStr Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
title_full_unstemmed Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
title_short Pólya–Szegö Integral Inequalities Using the Caputo–Fabrizio Approach
title_sort polya szego integral inequalities using the caputo fabrizio approach
topic Pólya–Szegö inequality
Minkowsky inequality
Caputo–Fabrizio fractional integrals
url https://www.mdpi.com/2075-1680/11/2/79
work_keys_str_mv AT ashabnale polyaszegointegralinequalitiesusingthecaputofabrizioapproach
AT vaijanathlchinchane polyaszegointegralinequalitiesusingthecaputofabrizioapproach
AT satishkpanchal polyaszegointegralinequalitiesusingthecaputofabrizioapproach
AT christophechesneau polyaszegointegralinequalitiesusingthecaputofabrizioapproach