Viroid-induced DNA methylation in plants

In eukaryotes, DNA methylation refers to the addition of a methyl group to the fifth atom in the six-atom ring of cytosine residues. At least in plants, DNA regions that become de novo methylated can be defined by homologous RNA molecules in a process termed RNA-directed DNA methylation (RdDM). RdDM...

Full description

Bibliographic Details
Main Authors: Dalakouras Athanasios, Dadami Elena, Wassenegger Michael
Format: Article
Language:English
Published: De Gruyter 2013-12-01
Series:Biomolecular Concepts
Subjects:
Online Access:https://doi.org/10.1515/bmc-2013-0030
Description
Summary:In eukaryotes, DNA methylation refers to the addition of a methyl group to the fifth atom in the six-atom ring of cytosine residues. At least in plants, DNA regions that become de novo methylated can be defined by homologous RNA molecules in a process termed RNA-directed DNA methylation (RdDM). RdDM was first discovered in viroid-infected plants. Viroids are pathogenic circular, non-coding, single-stranded RNA molecules. Members of the Pospiviroidae family replicate in the nucleus through double-stranded RNA intermediates, attracting the host RNA silencing machinery. The recruitment of this machinery results in the production of viroid-derived small RNAs (vd-sRNAs) that mediate RNA degradation and DNA methylation of cognate sequences. Here, we provide an overview of the cumulative data on the field of viroid-induced RdDM and discuss three possible scenarios concerning the mechanistic details of its establishment.
ISSN:1868-5021
1868-503X