Mast cell deficiency improves cognition and enhances disease-associated microglia in 5XFAD mice

Summary: Emerging evidence suggests that peripheral immune cells contribute to Alzheimer’s disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice w...

Full description

Bibliographic Details
Main Authors: Chih-Chung Jerry Lin, Fanny Herisson, Hoang Le, Nader Jaafar, Kashish Chetal, Mary K. Oram, Kelly L. Flynn, Evan P. Gavrilles, Ruslan I. Sadreyev, Felipe L. Schiffino, Rudolph E. Tanzi
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723011531
Description
Summary:Summary: Emerging evidence suggests that peripheral immune cells contribute to Alzheimer’s disease (AD) neuropathogenesis. Among these, mast cells are known for their functions in allergic reactions and neuroinflammation; however, little is known about their role in AD. Here, we crossed 5XFAD mice with mast cell-deficient strains and observed the effects on AD-related neuropathology and cognitive impairment. We found that mast cell depletion improved contextual fear conditioning in 5XFAD mice without affecting cued fear conditioning, anxiety-like behavior, or amyloid burden. Furthermore, mast cell depletion led to an upregulation of transcriptomic signatures for putatively protective disease-associated microglia and resulted in reduced markers indicative of reactive astrocytes. We hypothesize a system of bidirectional communication between dural mast cells and the brain, where mast cells respond to signals from the brain environment by expressing immune-regulatory mediators, impacting cognition and glial cell function. These findings highlight mast cells as potential therapeutic targets for AD.
ISSN:2211-1247