Positive solutions to an Nth order right focal boundary value problem

The existence of a positive solution is obtained for the $n^{th}$ order right focal boundary value problem $y^{(n)}=f(x,y)$, $0 < x \leq 1$, $y^{(i)}(0)=y^{(n-2)}(p)=y^{(n-1)}(1)=0, i=0,\cdots, n-3$, where $\frac{1}{2}<p<1$ is fixed and where $f(x,y)$ is singular at $x=0, y=0$, and possibly...

Full description

Bibliographic Details
Main Author: M. Maroun
Format: Article
Language:English
Published: University of Szeged 2007-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=264
_version_ 1797830815093096448
author M. Maroun
author_facet M. Maroun
author_sort M. Maroun
collection DOAJ
description The existence of a positive solution is obtained for the $n^{th}$ order right focal boundary value problem $y^{(n)}=f(x,y)$, $0 < x \leq 1$, $y^{(i)}(0)=y^{(n-2)}(p)=y^{(n-1)}(1)=0, i=0,\cdots, n-3$, where $\frac{1}{2}<p<1$ is fixed and where $f(x,y)$ is singular at $x=0, y=0$, and possibly at $y=\infty$. The method applies a fixed-point theorem for mappings that are decreasing with respect to a cone.
first_indexed 2024-04-09T13:42:06Z
format Article
id doaj.art-ebca07b4e0bc4ca9a05c607dcc2e8928
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:42:06Z
publishDate 2007-03-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-ebca07b4e0bc4ca9a05c607dcc2e89282023-05-09T07:52:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752007-03-012007411710.14232/ejqtde.2007.1.4264Positive solutions to an Nth order right focal boundary value problemM. Maroun0University of Louisiana at Monroe, Monroe, LA, U.S.A.The existence of a positive solution is obtained for the $n^{th}$ order right focal boundary value problem $y^{(n)}=f(x,y)$, $0 < x \leq 1$, $y^{(i)}(0)=y^{(n-2)}(p)=y^{(n-1)}(1)=0, i=0,\cdots, n-3$, where $\frac{1}{2}<p<1$ is fixed and where $f(x,y)$ is singular at $x=0, y=0$, and possibly at $y=\infty$. The method applies a fixed-point theorem for mappings that are decreasing with respect to a cone.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=264
spellingShingle M. Maroun
Positive solutions to an Nth order right focal boundary value problem
Electronic Journal of Qualitative Theory of Differential Equations
title Positive solutions to an Nth order right focal boundary value problem
title_full Positive solutions to an Nth order right focal boundary value problem
title_fullStr Positive solutions to an Nth order right focal boundary value problem
title_full_unstemmed Positive solutions to an Nth order right focal boundary value problem
title_short Positive solutions to an Nth order right focal boundary value problem
title_sort positive solutions to an nth order right focal boundary value problem
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=264
work_keys_str_mv AT mmaroun positivesolutionstoannthorderrightfocalboundaryvalueproblem