Positive solutions to an Nth order right focal boundary value problem
The existence of a positive solution is obtained for the $n^{th}$ order right focal boundary value problem $y^{(n)}=f(x,y)$, $0 < x \leq 1$, $y^{(i)}(0)=y^{(n-2)}(p)=y^{(n-1)}(1)=0, i=0,\cdots, n-3$, where $\frac{1}{2}<p<1$ is fixed and where $f(x,y)$ is singular at $x=0, y=0$, and possibly...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2007-03-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=264 |
_version_ | 1797830815093096448 |
---|---|
author | M. Maroun |
author_facet | M. Maroun |
author_sort | M. Maroun |
collection | DOAJ |
description | The existence of a positive solution is obtained for the $n^{th}$ order right focal boundary value problem $y^{(n)}=f(x,y)$, $0 < x \leq 1$, $y^{(i)}(0)=y^{(n-2)}(p)=y^{(n-1)}(1)=0, i=0,\cdots, n-3$, where $\frac{1}{2}<p<1$ is fixed and where $f(x,y)$ is singular at $x=0, y=0$, and possibly at $y=\infty$. The method applies a fixed-point theorem for mappings that are decreasing with respect to a cone. |
first_indexed | 2024-04-09T13:42:06Z |
format | Article |
id | doaj.art-ebca07b4e0bc4ca9a05c607dcc2e8928 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:42:06Z |
publishDate | 2007-03-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-ebca07b4e0bc4ca9a05c607dcc2e89282023-05-09T07:52:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752007-03-012007411710.14232/ejqtde.2007.1.4264Positive solutions to an Nth order right focal boundary value problemM. Maroun0University of Louisiana at Monroe, Monroe, LA, U.S.A.The existence of a positive solution is obtained for the $n^{th}$ order right focal boundary value problem $y^{(n)}=f(x,y)$, $0 < x \leq 1$, $y^{(i)}(0)=y^{(n-2)}(p)=y^{(n-1)}(1)=0, i=0,\cdots, n-3$, where $\frac{1}{2}<p<1$ is fixed and where $f(x,y)$ is singular at $x=0, y=0$, and possibly at $y=\infty$. The method applies a fixed-point theorem for mappings that are decreasing with respect to a cone.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=264 |
spellingShingle | M. Maroun Positive solutions to an Nth order right focal boundary value problem Electronic Journal of Qualitative Theory of Differential Equations |
title | Positive solutions to an Nth order right focal boundary value problem |
title_full | Positive solutions to an Nth order right focal boundary value problem |
title_fullStr | Positive solutions to an Nth order right focal boundary value problem |
title_full_unstemmed | Positive solutions to an Nth order right focal boundary value problem |
title_short | Positive solutions to an Nth order right focal boundary value problem |
title_sort | positive solutions to an nth order right focal boundary value problem |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=264 |
work_keys_str_mv | AT mmaroun positivesolutionstoannthorderrightfocalboundaryvalueproblem |