High-performance spinel NiMn2O4 supported carbon felt for effective electrochemical conversion of ethylene glycol and hydrogen evolution applications

Abstract One of the most effective electrocatalysts for electrochemical oxidation reactions is NiMn2O4 spinel oxide. Here, a 3-D porous substrate with good conductivity called carbon felt (CF) is utilized. The composite of NiMn2O4-supported carbon felt was prepared using the facile hydrothermal meth...

Full description

Bibliographic Details
Main Authors: Shymaa S. Medany, Mahmoud A. Hefnawy, Soha M. Kamal
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-50950-3
Description
Summary:Abstract One of the most effective electrocatalysts for electrochemical oxidation reactions is NiMn2O4 spinel oxide. Here, a 3-D porous substrate with good conductivity called carbon felt (CF) is utilized. The composite of NiMn2O4-supported carbon felt was prepared using the facile hydrothermal method. The prepared electrode was characterized by various surface and bulk analyses like powder X-ray diffraction, X-ray photon spectroscopy (XPS), Scanning and transmitted electron microscopy, thermal analysis (DTA), energy dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET). The activity of NiMn2O4 toward the electrochemical conversion of ethylene glycol at a wide range of concentrations was investigated. The electrode showed a current density of 24 mA cm−2 at a potential of 0.5 V (vs. Ag/AgCl). Furthermore, the ability of the electrode toward hydrogen evaluation in an alkaline medium was performed. Thus, the electrode achieved a current density equal 10 mA cm−2 at an overpotential of 210 mV (vs. RHE), and the provided Tafel slope was 98 mV dec−1.
ISSN:2045-2322