Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme

Fractals are essential in representing the natural environment due to their important characteristic of self similarity. The dynamical behavior of fractals mostly depends on escape criteria using different iterative techniques. In this article, we establish an escape criteria using DK-iteration as w...

Full description

Bibliographic Details
Main Authors: Asifa Tassaddiq, Muhammad Tanveer, Muhammad Azhar, Muhammad Arshad, Farha Lakhani
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/7/1/76
_version_ 1797442333785980928
author Asifa Tassaddiq
Muhammad Tanveer
Muhammad Azhar
Muhammad Arshad
Farha Lakhani
author_facet Asifa Tassaddiq
Muhammad Tanveer
Muhammad Azhar
Muhammad Arshad
Farha Lakhani
author_sort Asifa Tassaddiq
collection DOAJ
description Fractals are essential in representing the natural environment due to their important characteristic of self similarity. The dynamical behavior of fractals mostly depends on escape criteria using different iterative techniques. In this article, we establish an escape criteria using DK-iteration as well as complex sine function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>(</mo><mo form="prefix">sin</mo><mrow><mo>(</mo><msup><mi>z</mi><mi>m</mi></msup><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mo>;</mo><mspace width="3.33333pt"></mspace><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula> and complex exponential function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>(</mo><msup><mi>e</mi><msup><mi>z</mi><mi>m</mi></msup></msup><mo>+</mo><mi>c</mi><mo>;</mo><mspace width="3.33333pt"></mspace><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We use this to analyze the dynamical behavior of specific fractals namely Julia set and Mandelbrot set. This is achieved by generalizing the existing algorithms, which led to the visualization of beautiful fractals for <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></semantics></math></inline-formula> and 4. Moreover, the image generation time in seconds using different values of input parameters is also computed.
first_indexed 2024-03-09T12:40:19Z
format Article
id doaj.art-ebda0b544cc8461f99bae179811ae800
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T12:40:19Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-ebda0b544cc8461f99bae179811ae8002023-11-30T22:19:59ZengMDPI AGFractal and Fractional2504-31102023-01-01717610.3390/fractalfract7010076Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative SchemeAsifa Tassaddiq0Muhammad Tanveer1Muhammad Azhar2Muhammad Arshad3Farha Lakhani4Department of Basic Sciences and Humanities, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi ArabiaDepartment of Mathemtics and Statistics, Sub-Campus Depalpur, University of Agriculture, Faisalabad 38040, PakistanDepartment of Mathemtics, Government College University Lahore, Lahore 54000, PakistanDepartment of Mathemtics and Statistics, Sub-Campus Depalpur, University of Agriculture, Faisalabad 38040, PakistanSchool of Computing, University of Leeds, Leeds LS2 9JT, UKFractals are essential in representing the natural environment due to their important characteristic of self similarity. The dynamical behavior of fractals mostly depends on escape criteria using different iterative techniques. In this article, we establish an escape criteria using DK-iteration as well as complex sine function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>(</mo><mo form="prefix">sin</mo><mrow><mo>(</mo><msup><mi>z</mi><mi>m</mi></msup><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mo>;</mo><mspace width="3.33333pt"></mspace><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula> and complex exponential function <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>(</mo><msup><mi>e</mi><msup><mi>z</mi><mi>m</mi></msup></msup><mo>+</mo><mi>c</mi><mo>;</mo><mspace width="3.33333pt"></mspace><mi>m</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mi>c</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We use this to analyze the dynamical behavior of specific fractals namely Julia set and Mandelbrot set. This is achieved by generalizing the existing algorithms, which led to the visualization of beautiful fractals for <inline-formula><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></semantics></math></inline-formula> and 4. Moreover, the image generation time in seconds using different values of input parameters is also computed.https://www.mdpi.com/2504-3110/7/1/76fractalssine functionexponential functionDK-iterationJulia set (J-set)Mandelbrot set (M-set)
spellingShingle Asifa Tassaddiq
Muhammad Tanveer
Muhammad Azhar
Muhammad Arshad
Farha Lakhani
Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme
Fractal and Fractional
fractals
sine function
exponential function
DK-iteration
Julia set (J-set)
Mandelbrot set (M-set)
title Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme
title_full Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme
title_fullStr Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme
title_full_unstemmed Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme
title_short Escape Criteria for Generating Fractals of Complex Functions Using DK-Iterative Scheme
title_sort escape criteria for generating fractals of complex functions using dk iterative scheme
topic fractals
sine function
exponential function
DK-iteration
Julia set (J-set)
Mandelbrot set (M-set)
url https://www.mdpi.com/2504-3110/7/1/76
work_keys_str_mv AT asifatassaddiq escapecriteriaforgeneratingfractalsofcomplexfunctionsusingdkiterativescheme
AT muhammadtanveer escapecriteriaforgeneratingfractalsofcomplexfunctionsusingdkiterativescheme
AT muhammadazhar escapecriteriaforgeneratingfractalsofcomplexfunctionsusingdkiterativescheme
AT muhammadarshad escapecriteriaforgeneratingfractalsofcomplexfunctionsusingdkiterativescheme
AT farhalakhani escapecriteriaforgeneratingfractalsofcomplexfunctionsusingdkiterativescheme