Real-Time State of Charge Estimation for Each Cell of Lithium Battery Pack Using Neural Networks

With the emergence of problems on environmental pollutions, lithium batteries have attracted considerable attention as an efficient and nature-friendly alternative energy storage device owing to their advantages, such as high power density, low self-discharge rate, and long life cycle. They are wide...

Full description

Bibliographic Details
Main Authors: JaeHyung Park, JongHyun Lee, SiJin Kim, InSoo Lee
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/23/8644
Description
Summary:With the emergence of problems on environmental pollutions, lithium batteries have attracted considerable attention as an efficient and nature-friendly alternative energy storage device owing to their advantages, such as high power density, low self-discharge rate, and long life cycle. They are widely used in numerous applications, from everyday items, such as smartphones, wireless vacuum cleaners, and wireless power tools, to transportation means, such as electric vehicles and bicycles. In this paper, the state of charge (SOC) of each cell of the lithium battery pack was estimated in real time using two types of neural networks: Multi-layer Neural Network (MNN) and Long Short-Term Memory (LSTM). To determine the difference in the SOC estimation performance under various conditions, the input values were compared using 2, 6, and 8 input values, and the difference according to the use of temperature variable data was compared, and finally, the MNN and LSTM. The differences were compared. Real-time SOC was estimated using the method with the lowest error rate.
ISSN:2076-3417