The lower labile carbon of surface soils in Chinese semiarid areas

Hot water extractable organic carbon (HWOC), the labile carbon component, is often used to indicate soil organic carbon (SOC) dynamics. Nevertheless, few studies have been carried out in arid climate areas which affects our full understanding of HWOC. Here, we investigated the change in HWOC in the...

Full description

Bibliographic Details
Main Authors: Fan Zhang, Jiamin Qi, Congwen Gui, Yilin Zhang, Zheng Wang
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Acta Agriculturae Scandinavica. Section B, Soil and Plant Science
Subjects:
Online Access:http://dx.doi.org/10.1080/09064710.2023.2174044
Description
Summary:Hot water extractable organic carbon (HWOC), the labile carbon component, is often used to indicate soil organic carbon (SOC) dynamics. Nevertheless, few studies have been carried out in arid climate areas which affects our full understanding of HWOC. Here, we investigated the change in HWOC in the topsoil of different ecosystems in the southern part of the Loess Plateau in the semiarid region of China and compared it with that in other regions. The HWOC concentrations of the study area (0-10 cm) were 0.27 ± 0.12 g C kg−1 and 0.19 ± 0.04 g C kg−1 in the natural and agricultural systems respectively, and the HWOC proportions were 1.38 ± 0.38% and 2.18 ± 0.22%. The HWOC concentration and proportion in the study area were much lower than the reported data in other areas, which may be affected by drought conditions. Irrigation could weaken the difference in HWOC between agricultural systems in different regions. Since HWOC is easily lost due to the impact of the arid climate, the soil carbon balance and carbon sequestration in arid and semiarid areas are relatively unstable, indicating that soil management should be improved in combination with water management.
ISSN:0906-4710
1651-1913