Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy

Abstract In the past decade, extracellular vesicles (EVs) have attracted substantial interest in biomedicine. With progress in the field, we have an increasing understanding of cellular responses to EVs. In this Technical Report, we describe the direct nanoinjection of EVs into the cytoplasm of sing...

Full description

Bibliographic Details
Main Authors: Kinga Dóra Kovács, Tamás Visnovitz, Tamás Gerecsei, Beatrix Peter, Sándor Kurunczi, Anna Koncz, Krisztina Németh, Dorina Lenzinger, Krisztina V. Vukman, Anna Balogh, Imola Rajmon, Péter Lőrincz, Inna Székács, Edit I. Buzás, Robert Horvath
Format: Article
Language:English
Published: Wiley 2023-12-01
Series:Journal of Extracellular Vesicles
Subjects:
Online Access:https://doi.org/10.1002/jev2.12388
_version_ 1827397677947551744
author Kinga Dóra Kovács
Tamás Visnovitz
Tamás Gerecsei
Beatrix Peter
Sándor Kurunczi
Anna Koncz
Krisztina Németh
Dorina Lenzinger
Krisztina V. Vukman
Anna Balogh
Imola Rajmon
Péter Lőrincz
Inna Székács
Edit I. Buzás
Robert Horvath
author_facet Kinga Dóra Kovács
Tamás Visnovitz
Tamás Gerecsei
Beatrix Peter
Sándor Kurunczi
Anna Koncz
Krisztina Németh
Dorina Lenzinger
Krisztina V. Vukman
Anna Balogh
Imola Rajmon
Péter Lőrincz
Inna Székács
Edit I. Buzás
Robert Horvath
author_sort Kinga Dóra Kovács
collection DOAJ
description Abstract In the past decade, extracellular vesicles (EVs) have attracted substantial interest in biomedicine. With progress in the field, we have an increasing understanding of cellular responses to EVs. In this Technical Report, we describe the direct nanoinjection of EVs into the cytoplasm of single cells of different cell lines. By using robotic fluidic force microscopy (robotic FluidFM), nanoinjection of GFP positive EVs and EV‐like particles into single live HeLa, H9c2, MDA‐MB‐231 and LCLC‐103H cells proved to be feasible. This injection platform offered the advantage of high cell selectivity and efficiency. The nanoinjected EVs were initially localized in concentrated spot‐like regions within the cytoplasm. Later, they were transported towards the periphery of the cells. Based on our proof‐of‐principle data, robotic FluidFM is suitable for targeting single living cells by EVs and may lead to information about intracellular EV cargo delivery at a single‐cell level.
first_indexed 2024-03-08T19:14:05Z
format Article
id doaj.art-ec0324f266c348fba555e10b43d9430e
institution Directory Open Access Journal
issn 2001-3078
language English
last_indexed 2024-03-08T19:14:05Z
publishDate 2023-12-01
publisher Wiley
record_format Article
series Journal of Extracellular Vesicles
spelling doaj.art-ec0324f266c348fba555e10b43d9430e2023-12-27T09:15:41ZengWileyJournal of Extracellular Vesicles2001-30782023-12-011212n/an/a10.1002/jev2.12388Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopyKinga Dóra Kovács0Tamás Visnovitz1Tamás Gerecsei2Beatrix Peter3Sándor Kurunczi4Anna Koncz5Krisztina Németh6Dorina Lenzinger7Krisztina V. Vukman8Anna Balogh9Imola Rajmon10Péter Lőrincz11Inna Székács12Edit I. Buzás13Robert Horvath14Nanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryDepartment of Genetics, Cell‐ and Immunobiology Semmelweis University Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryDepartment of Genetics, Cell‐ and Immunobiology Semmelweis University Budapest HungaryDepartment of Genetics, Cell‐ and Immunobiology Semmelweis University Budapest HungaryDepartment of Genetics, Cell‐ and Immunobiology Semmelweis University Budapest HungaryDepartment of Genetics, Cell‐ and Immunobiology Semmelweis University Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryDepartment of Anatomy, Cell and Developmental Biology Eötvös Loránd University Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryDepartment of Genetics, Cell‐ and Immunobiology Semmelweis University Budapest HungaryNanobiosensorics Laboratory Institute of Technical Physics and Materials Science, HUN‐REN Centre for Energy Research Budapest HungaryAbstract In the past decade, extracellular vesicles (EVs) have attracted substantial interest in biomedicine. With progress in the field, we have an increasing understanding of cellular responses to EVs. In this Technical Report, we describe the direct nanoinjection of EVs into the cytoplasm of single cells of different cell lines. By using robotic fluidic force microscopy (robotic FluidFM), nanoinjection of GFP positive EVs and EV‐like particles into single live HeLa, H9c2, MDA‐MB‐231 and LCLC‐103H cells proved to be feasible. This injection platform offered the advantage of high cell selectivity and efficiency. The nanoinjected EVs were initially localized in concentrated spot‐like regions within the cytoplasm. Later, they were transported towards the periphery of the cells. Based on our proof‐of‐principle data, robotic FluidFM is suitable for targeting single living cells by EVs and may lead to information about intracellular EV cargo delivery at a single‐cell level.https://doi.org/10.1002/jev2.12388cell‐to‐cell transportintracellular deliverymRNA injectionorganelle‐specific targetingrobotic FluidFMsingle‐cell
spellingShingle Kinga Dóra Kovács
Tamás Visnovitz
Tamás Gerecsei
Beatrix Peter
Sándor Kurunczi
Anna Koncz
Krisztina Németh
Dorina Lenzinger
Krisztina V. Vukman
Anna Balogh
Imola Rajmon
Péter Lőrincz
Inna Székács
Edit I. Buzás
Robert Horvath
Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
Journal of Extracellular Vesicles
cell‐to‐cell transport
intracellular delivery
mRNA injection
organelle‐specific targeting
robotic FluidFM
single‐cell
title Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
title_full Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
title_fullStr Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
title_full_unstemmed Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
title_short Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
title_sort nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy
topic cell‐to‐cell transport
intracellular delivery
mRNA injection
organelle‐specific targeting
robotic FluidFM
single‐cell
url https://doi.org/10.1002/jev2.12388
work_keys_str_mv AT kingadorakovacs nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT tamasvisnovitz nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT tamasgerecsei nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT beatrixpeter nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT sandorkurunczi nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT annakoncz nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT krisztinanemeth nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT dorinalenzinger nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT krisztinavvukman nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT annabalogh nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT imolarajmon nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT peterlorincz nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT innaszekacs nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT editibuzas nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy
AT roberthorvath nanoinjectionofextracellularvesiclestosinglelivecellsbyroboticfluidicforcemicroscopy