A characterization of chaotic order

<p/> <p>The chaotic order <inline-formula><graphic file="1029-242X-2006-79123-i1.gif"/></inline-formula> among positive invertible operators <inline-formula><graphic file="1029-242X-2006-79123-i2.gif"/></inline-formula> on a Hilbert...

Full description

Bibliographic Details
Main Authors: Yang Changsen, Gao Fugen
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2006/79123
Description
Summary:<p/> <p>The chaotic order <inline-formula><graphic file="1029-242X-2006-79123-i1.gif"/></inline-formula> among positive invertible operators <inline-formula><graphic file="1029-242X-2006-79123-i2.gif"/></inline-formula> on a Hilbert space is introduced by <inline-formula><graphic file="1029-242X-2006-79123-i3.gif"/></inline-formula>. Using Uchiyama's method and Furuta's Kantorovich-type inequality, we will point out that <inline-formula><graphic file="1029-242X-2006-79123-i4.gif"/></inline-formula> if and only if <inline-formula><graphic file="1029-242X-2006-79123-i5.gif"/></inline-formula> holds for any <inline-formula><graphic file="1029-242X-2006-79123-i6.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-79123-i7.gif"/></inline-formula> is any fixed positive number. On the other hand, for any fixed <inline-formula><graphic file="1029-242X-2006-79123-i8.gif"/></inline-formula>, we also show that there exist positive invertible operators <inline-formula><graphic file="1029-242X-2006-79123-i9.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2006-79123-i10.gif"/></inline-formula> such that <inline-formula><graphic file="1029-242X-2006-79123-i11.gif"/></inline-formula> holds for any <inline-formula><graphic file="1029-242X-2006-79123-i12.gif"/></inline-formula>, but <inline-formula><graphic file="1029-242X-2006-79123-i13.gif"/></inline-formula> is not valid.</p>
ISSN:1025-5834
1029-242X