An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems

The linear Diophantine fuzzy set notion is the main foundation of the interactive method of tackling nonlinear fractional programming problems that is presented in this research. When the decision maker (DM) defines the degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/Ma...

Full description

Bibliographic Details
Main Authors: Salma Iqbal, Naveed Yaqoob, Muhammad Gulistan
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/15/3383
_version_ 1797586418113970176
author Salma Iqbal
Naveed Yaqoob
Muhammad Gulistan
author_facet Salma Iqbal
Naveed Yaqoob
Muhammad Gulistan
author_sort Salma Iqbal
collection DOAJ
description The linear Diophantine fuzzy set notion is the main foundation of the interactive method of tackling nonlinear fractional programming problems that is presented in this research. When the decision maker (DM) defines the degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> level sets, the max-min problem is solved in this interactive technique using Zimmermann’s min operator method. By using the updating technique of degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, we can solve DM from the set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi></mrow></semantics></math></inline-formula>-cut optimal solutions based on the membership function and non-membership function. Fuzzy numbers based on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-cut analysis bestowing the degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> given by DM can first be used to classify fuzzy Diophantine inside the coefficients. After this, a crisp multi-objective non-linear fractional programming problem (MONLFPP) is created from a Diophantine fuzzy nonlinear programming problem (DFNLFPP). Additionally, the MONLFPP can be reduced to a single-objective nonlinear programming problem (NLPP) using the idea of fuzzy mathematical programming, which can then be solved using any suitable NLPP algorithm. The suggested approach is demonstrated using a numerical example.
first_indexed 2024-03-11T00:22:56Z
format Article
id doaj.art-ec11395e8ea14b1595fdb87a63d49118
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T00:22:56Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-ec11395e8ea14b1595fdb87a63d491182023-11-18T23:15:55ZengMDPI AGMathematics2227-73902023-08-011115338310.3390/math11153383An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming ProblemsSalma Iqbal0Naveed Yaqoob1Muhammad Gulistan2Department of Mathematics and Statistics, Riphah International University, Sector I-14, Islamabad 44000, PakistanDepartment of Mathematics and Statistics, Riphah International University, Sector I-14, Islamabad 44000, PakistanDepartment of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, CanadaThe linear Diophantine fuzzy set notion is the main foundation of the interactive method of tackling nonlinear fractional programming problems that is presented in this research. When the decision maker (DM) defines the degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> level sets, the max-min problem is solved in this interactive technique using Zimmermann’s min operator method. By using the updating technique of degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, we can solve DM from the set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi></mrow></semantics></math></inline-formula>-cut optimal solutions based on the membership function and non-membership function. Fuzzy numbers based on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-cut analysis bestowing the degree <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> given by DM can first be used to classify fuzzy Diophantine inside the coefficients. After this, a crisp multi-objective non-linear fractional programming problem (MONLFPP) is created from a Diophantine fuzzy nonlinear programming problem (DFNLFPP). Additionally, the MONLFPP can be reduced to a single-objective nonlinear programming problem (NLPP) using the idea of fuzzy mathematical programming, which can then be solved using any suitable NLPP algorithm. The suggested approach is demonstrated using a numerical example.https://www.mdpi.com/2227-7390/11/15/3383nonlinear programming problemsfuzzy setslinear Diophantine fuzzy setsLDF-nonlinear programming problems
spellingShingle Salma Iqbal
Naveed Yaqoob
Muhammad Gulistan
An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems
Mathematics
nonlinear programming problems
fuzzy sets
linear Diophantine fuzzy sets
LDF-nonlinear programming problems
title An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems
title_full An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems
title_fullStr An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems
title_full_unstemmed An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems
title_short An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems
title_sort investigation of linear diophantine fuzzy nonlinear fractional programming problems
topic nonlinear programming problems
fuzzy sets
linear Diophantine fuzzy sets
LDF-nonlinear programming problems
url https://www.mdpi.com/2227-7390/11/15/3383
work_keys_str_mv AT salmaiqbal aninvestigationoflineardiophantinefuzzynonlinearfractionalprogrammingproblems
AT naveedyaqoob aninvestigationoflineardiophantinefuzzynonlinearfractionalprogrammingproblems
AT muhammadgulistan aninvestigationoflineardiophantinefuzzynonlinearfractionalprogrammingproblems
AT salmaiqbal investigationoflineardiophantinefuzzynonlinearfractionalprogrammingproblems
AT naveedyaqoob investigationoflineardiophantinefuzzynonlinearfractionalprogrammingproblems
AT muhammadgulistan investigationoflineardiophantinefuzzynonlinearfractionalprogrammingproblems