Mechanical behavior of Ti–6Al–4V lattice-walled tubes under uniaxial compression

The compression behavior of the lattice-walled tubes under variable strain rates are investigated by numerical simulation, and the stress-strain relationship of the structure under quasi-static loading is theoretically analyzed. The finite element software LS-DYNA is used to simulate the structure e...

Full description

Bibliographic Details
Main Authors: Gen-zhu Feng, Jing Wang, Xin-yuan Li, Li-jun Xiao, Wei-dong Song
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2022-07-01
Series:Defence Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214914721000908
Description
Summary:The compression behavior of the lattice-walled tubes under variable strain rates are investigated by numerical simulation, and the stress-strain relationship of the structure under quasi-static loading is theoretically analyzed. The finite element software LS-DYNA is used to simulate the structure established by the beam element, and the critical impact velocity is obtained when the structure collapses layer by layer. According to the plastic hinge theory and considering the combined action of the beam's bending moment and axial force in the structure, the stress-strain relationship of the structure under quasi-static loading is derived and compared with the experimental results. The numerical simulation results reveal that the structure of the single-layer gradient tube(SGC) does not undergo shear deformation under quasi-static and low-speed impact. The critical speed of the gradient square tube(GS) is higher than that of a cylindrical tube. The theoretical model can correctly reflect the mechanical response of the structure under uniaxial compression.
ISSN:2214-9147