An ultrasensitive high throughput screen for DNA methyltransferase 1-targeted molecular probes.

DNA methyltransferase 1 (DNMT1) is the enzyme most responsible for epigenetic modification of human DNA and the intended target of approved cancer drugs such as 5-aza-cytidine and 5-aza-2'-deoxycytidine. 5-aza nucleosides have complex mechanisms of action that require incorporation into DNA, an...

Full description

Bibliographic Details
Main Authors: Rebecca L Fagan, Meng Wu, Frédéric Chédin, Charles Brenner
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3827244?pdf=render
Description
Summary:DNA methyltransferase 1 (DNMT1) is the enzyme most responsible for epigenetic modification of human DNA and the intended target of approved cancer drugs such as 5-aza-cytidine and 5-aza-2'-deoxycytidine. 5-aza nucleosides have complex mechanisms of action that require incorporation into DNA, and covalent trapping and proteolysis of DNMT isozymes. Direct DNMT inhibitors are needed to refine understanding of the role of specific DNMT isozymes in cancer etiology and, potentially, to improve cancer prevention and treatment. Here, we developed a high throughput pipeline for identification of direct DNMT1 inhibitors. The components of this screen include an activated form of DNMT1, a restriction enzyme-coupled fluorigenic assay performed in 384 well plates with a z-factor of 0.66, a counter screen against the restriction enzyme, a screen to eliminate DNA intercalators, and a differential scanning fluorimetry assay to validate direct binders. Using the Microsource Spectrum collection of 2320 compounds, this screen identified nine compounds with dose responses ranging from 300 nM to 11 µM, representing at least two different pharmacophores with DNMT1 inhibitory activity. Seven of nine inhibitors identified exhibited two to four-fold selectivity for DNMT1 versus DNMT3A.
ISSN:1932-6203