Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach
The motor system is becoming increasingly recognized as an important site of disruption in autism spectrum disorders (ASD). However, the precise nature of this motor disruption remains unclear with some conflicting reports. We employed a smart tablet serious game approach, which did not require verb...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-03-01
|
Series: | Brain Disorders |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2666459322000038 |
_version_ | 1818321094773309440 |
---|---|
author | Szu-Ching Lu Philip Rowe Christos Tachtatzis Ivan Andonovic Anna Anzulewicz Krzysztof Sobota Jonathan Delafield-Butt |
author_facet | Szu-Ching Lu Philip Rowe Christos Tachtatzis Ivan Andonovic Anna Anzulewicz Krzysztof Sobota Jonathan Delafield-Butt |
author_sort | Szu-Ching Lu |
collection | DOAJ |
description | The motor system is becoming increasingly recognized as an important site of disruption in autism spectrum disorders (ASD). However, the precise nature of this motor disruption remains unclear with some conflicting reports. We employed a smart tablet serious game approach, which did not require verbal instruction. Children's movements on the touch screen were recorded, and their kinematics computed from two games. One afforded goal-directed swipes, and the other free-style colouring. Children aged 25–79 months participated in this study, including 37 children with ASD and 45 typically developing (TD) children. Results revealed significant group, age, and task differences. In comparison to controls, children with ASD <5 years old performed faster goal-directed swipes, whereas those ≥5 years old performed slower goal-directed swipes. In contrast, during free-style drawing, children with ASD moved faster than the controls irrespective of age. Within the TD participants, the older subgroup (≥5 years) performed faster movements than the younger subgroup (<5 years) in both game contexts. However, the ASD older subgroup moved slower than their younger subgroup in the case of goal-directed swipes while no speed difference was observed in the case of free-style drawing. These findings reveal developmental differences in motor development in young children with ASD from their TD counterparts. Further, they demonstrate smart tablet gameplay can produce precise computational metrics of motor kinematics to characterize these differences deployable in schools, clinics and home settings for large-scale data collection for both research and clinical purposes that may ultimately enable accessible and scalable early detection of ASD. |
first_indexed | 2024-12-13T10:35:27Z |
format | Article |
id | doaj.art-ec4f774efc434126b6fa5e37c00addb6 |
institution | Directory Open Access Journal |
issn | 2666-4593 |
language | English |
last_indexed | 2024-12-13T10:35:27Z |
publishDate | 2022-03-01 |
publisher | Elsevier |
record_format | Article |
series | Brain Disorders |
spelling | doaj.art-ec4f774efc434126b6fa5e37c00addb62022-12-21T23:50:44ZengElsevierBrain Disorders2666-45932022-03-015100032Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approachSzu-Ching Lu0Philip Rowe1Christos Tachtatzis2Ivan Andonovic3Anna Anzulewicz4Krzysztof Sobota5Jonathan Delafield-Butt6Laboratory for Innovation in Autism, School of Education, University of Strathclyde, United Kingdom; Corresponding author at: Laboratory for Innovation in Autism, University of Strathclyde, Graham Hills Building GH852, 40 George Street, Glasgow, G1 1QE, Scotland, United KingdomLaboratory for Innovation in Autism, School of Education, University of Strathclyde, United Kingdom; Department of Biomedical Engineering, University of Strathclyde, United KingdomLaboratory for Innovation in Autism, School of Education, University of Strathclyde, United Kingdom; Department of Electronic and Electrical Engineering, University of Strathclyde, United KingdomLaboratory for Innovation in Autism, School of Education, University of Strathclyde, United Kingdom; Department of Electronic and Electrical Engineering, University of Strathclyde, United KingdomFaculty of Psychology, University of Warsaw, PolandHarimata Sp. z.o.o., PolandLaboratory for Innovation in Autism, School of Education, University of Strathclyde, United KingdomThe motor system is becoming increasingly recognized as an important site of disruption in autism spectrum disorders (ASD). However, the precise nature of this motor disruption remains unclear with some conflicting reports. We employed a smart tablet serious game approach, which did not require verbal instruction. Children's movements on the touch screen were recorded, and their kinematics computed from two games. One afforded goal-directed swipes, and the other free-style colouring. Children aged 25–79 months participated in this study, including 37 children with ASD and 45 typically developing (TD) children. Results revealed significant group, age, and task differences. In comparison to controls, children with ASD <5 years old performed faster goal-directed swipes, whereas those ≥5 years old performed slower goal-directed swipes. In contrast, during free-style drawing, children with ASD moved faster than the controls irrespective of age. Within the TD participants, the older subgroup (≥5 years) performed faster movements than the younger subgroup (<5 years) in both game contexts. However, the ASD older subgroup moved slower than their younger subgroup in the case of goal-directed swipes while no speed difference was observed in the case of free-style drawing. These findings reveal developmental differences in motor development in young children with ASD from their TD counterparts. Further, they demonstrate smart tablet gameplay can produce precise computational metrics of motor kinematics to characterize these differences deployable in schools, clinics and home settings for large-scale data collection for both research and clinical purposes that may ultimately enable accessible and scalable early detection of ASD.http://www.sciencedirect.com/science/article/pii/S2666459322000038AutismMovementKinematicsPreschoolMotor developmentLearning |
spellingShingle | Szu-Ching Lu Philip Rowe Christos Tachtatzis Ivan Andonovic Anna Anzulewicz Krzysztof Sobota Jonathan Delafield-Butt Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach Brain Disorders Autism Movement Kinematics Preschool Motor development Learning |
title | Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach |
title_full | Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach |
title_fullStr | Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach |
title_full_unstemmed | Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach |
title_short | Swipe kinematic differences in young children with autism spectrum disorders are task- and age-dependent: A smart tablet game approach |
title_sort | swipe kinematic differences in young children with autism spectrum disorders are task and age dependent a smart tablet game approach |
topic | Autism Movement Kinematics Preschool Motor development Learning |
url | http://www.sciencedirect.com/science/article/pii/S2666459322000038 |
work_keys_str_mv | AT szuchinglu swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach AT philiprowe swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach AT christostachtatzis swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach AT ivanandonovic swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach AT annaanzulewicz swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach AT krzysztofsobota swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach AT jonathandelafieldbutt swipekinematicdifferencesinyoungchildrenwithautismspectrumdisordersaretaskandagedependentasmarttabletgameapproach |