Short Carbon Nanotube-Based Delivery of mRNA for HIV-1 Vaccines

Developing a safe and effective preventive for HIV-1 remains the hope for controlling the global AIDS epidemic. Recently, mRNA vaccines have emerged as a promising alternative to conventional vaccine approaches, primarily due to their rapid development and potential for low-cost manufacture. Despite...

Full description

Bibliographic Details
Main Authors: Yang Xu, Tammy Ferguson, Kazuya Masuda, Mohammad Adnan Siddiqui, Kelsi Poole Smith, Olivia Vest, Brad Brooks, Ziyou Zhou, Judy Obliosca, Xiang-Peng Kong, Xunqing Jiang, Masahiro Yamashita, Tsuji Moriya, Christopher Tison
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/13/7/1088
Description
Summary:Developing a safe and effective preventive for HIV-1 remains the hope for controlling the global AIDS epidemic. Recently, mRNA vaccines have emerged as a promising alternative to conventional vaccine approaches, primarily due to their rapid development and potential for low-cost manufacture. Despite the advantages of mRNA vaccines, challenges remain, especially due to the adverse effects of the delivery vehicle and low delivery efficiency. As a result, Luna Labs is developing a short carbon nanotube-based delivery platform (NanoVac) that can co-deliver mRNA and HIV-1 glycoproteins to the immune system efficiently with negligible toxicity. Surface chemistries of NanoVac were optimized to guide antigen/mRNA loading density and presentation. Multiple formulations were engineered for compatibility with both intramuscular and intranasal administration. NanoVac candidates demonstrated immunogenicity in rabbits and generated human-derived humoral and cellular responses in humanized mice (HIS). Briefly, 33% of the HIV-1–infected HIS mice vaccinated with NanoVac–mRNA was cleared of virus infection by 8–weeks post-infection. Finally, NanoVac stabilized the loaded mRNA against degradation under refrigeration for at least three months, reducing the cold chain burden for vaccine deployment.
ISSN:2218-273X