QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras
<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, as the common generalization of <...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-02-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/11/3/93 |
_version_ | 1797472869205147648 |
---|---|
author | Yudan Du Xiaohong Zhang |
author_facet | Yudan Du Xiaohong Zhang |
author_sort | Yudan Du |
collection | DOAJ |
description | <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, as the common generalization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>I</mi></mrow></semantics></math></inline-formula>-algebra and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula>-algebra, is a kind of important logic algebra. Herein, the new concepts of QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra and quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra are proposed and their structures and constructions are studied. First, the definition of QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is presented, and the structure of QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is obtained: Each QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is KG-union of quasi-alter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>K</mi></mrow></semantics></math></inline-formula>-algebra and anti-grouped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra. Second, the new concepts of generalized quasi-left alter (hyper) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebras and QM-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra are introduced, and some characterizations of them are investigated. Third, the definition of quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is proposed, and the relationships among <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>I</mi></mrow></semantics></math></inline-formula>-algebra, and quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra are discussed. Finally, several special classes of quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebras are studied in depth and the following important results are proved: (1) an anti-grouped quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is an anti-grouped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra; (2) every generalized anti-grouped quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra corresponds to a semihypergroup. |
first_indexed | 2024-03-09T20:07:16Z |
format | Article |
id | doaj.art-ec63cbf5c8d84611b7fc4f07101a294b |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-09T20:07:16Z |
publishDate | 2022-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-ec63cbf5c8d84611b7fc4f07101a294b2023-11-24T00:28:42ZengMDPI AGAxioms2075-16802022-02-011139310.3390/axioms11030093QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-AlgebrasYudan Du0Xiaohong Zhang1School of Mathematics & Data Science, Shaanxi University of Science & Technology, Xi’an 710021, ChinaSchool of Mathematics & Data Science, Shaanxi University of Science & Technology, Xi’an 710021, China<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, as the common generalization of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>I</mi></mrow></semantics></math></inline-formula>-algebra and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>C</mi></mrow></semantics></math></inline-formula>-algebra, is a kind of important logic algebra. Herein, the new concepts of QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra and quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra are proposed and their structures and constructions are studied. First, the definition of QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is presented, and the structure of QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is obtained: Each QM-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is KG-union of quasi-alter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>K</mi></mrow></semantics></math></inline-formula>-algebra and anti-grouped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra. Second, the new concepts of generalized quasi-left alter (hyper) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebras and QM-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra are introduced, and some characterizations of them are investigated. Third, the definition of quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is proposed, and the relationships among <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra, quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>C</mi><mi>I</mi></mrow></semantics></math></inline-formula>-algebra, and quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra are discussed. Finally, several special classes of quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebras are studied in depth and the following important results are proved: (1) an anti-grouped quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra is an anti-grouped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra; (2) every generalized anti-grouped quasi-hyper <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>Z</mi></mrow></semantics></math></inline-formula>-algebra corresponds to a semihypergroup.https://www.mdpi.com/2075-1680/11/3/93<i>BCI</i>-algebra<i>BZ</i>-algebraQM-<i>BZ</i>-algebraquasi-hyper <i>BZ</i>-algebraanti-grouped <i>BZ</i>-algebra |
spellingShingle | Yudan Du Xiaohong Zhang QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras Axioms <i>BCI</i>-algebra <i>BZ</i>-algebra QM-<i>BZ</i>-algebra quasi-hyper <i>BZ</i>-algebra anti-grouped <i>BZ</i>-algebra |
title | QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras |
title_full | QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras |
title_fullStr | QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras |
title_full_unstemmed | QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras |
title_short | QM-<i>BZ</i>-Algebras and Quasi-Hyper <i>BZ</i>-Algebras |
title_sort | qm i bz i algebras and quasi hyper i bz i algebras |
topic | <i>BCI</i>-algebra <i>BZ</i>-algebra QM-<i>BZ</i>-algebra quasi-hyper <i>BZ</i>-algebra anti-grouped <i>BZ</i>-algebra |
url | https://www.mdpi.com/2075-1680/11/3/93 |
work_keys_str_mv | AT yudandu qmibzialgebrasandquasihyperibzialgebras AT xiaohongzhang qmibzialgebrasandquasihyperibzialgebras |