Summary: | Climatic and traffic effects are the causes of aging of the surface layer of asphalt, which leads to the necessary renovation of the latter. The use of waste from the tread layer provides a viable and beneficial solution for the environment and the economy. However, this solution must meet the requirement of sustainable development, which necessitates that a road has a very long lifespan. In this study we investigated the performance of recycled asphalt in terms of fatigue (as an element of life-cycle control). All the formulas were tested by the fatigue test in order to define the influence of the proportions of the asphalt aggregates, penetrability of the new binder used, and the manufacturing temperature. The results obtained showed the relationship between the contribution binder (reproduced between the new binder and the old binder) and the fatigue resistance under the influence of the parameters that we have mentioned above. At the end an optimization study has been carried in order to determine exactly the doses required to formulate recycled asphalt resisted to fatigue, the optimization seeks to maximize the asphalt aggregates and minimized the temperature of manufacture with a class of the binder compatible.
|