A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions

The goal of increasing efficiency and durability of fuel cells can be achieved through optimal control of their operating conditions. In order to implement such controllers, accurate and computationally efficient fuel cell models must be developed. This work presents a hybrid (physics-based and data...

Full description

Bibliographic Details
Main Authors: José Agustín Aguilar, Damien Chanal, Didier Chamagne, Nadia Yousfi Steiner, Marie-Cécile Péra, Attila Husar, Juan Andrade-Cetto
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/2/508
_version_ 1827372376176721920
author José Agustín Aguilar
Damien Chanal
Didier Chamagne
Nadia Yousfi Steiner
Marie-Cécile Péra
Attila Husar
Juan Andrade-Cetto
author_facet José Agustín Aguilar
Damien Chanal
Didier Chamagne
Nadia Yousfi Steiner
Marie-Cécile Péra
Attila Husar
Juan Andrade-Cetto
author_sort José Agustín Aguilar
collection DOAJ
description The goal of increasing efficiency and durability of fuel cells can be achieved through optimal control of their operating conditions. In order to implement such controllers, accurate and computationally efficient fuel cell models must be developed. This work presents a hybrid (physics-based and data-driven), control-oriented model for approximating the output voltage of proton exchange membrane fuel cells (PEMFCs) while operating under dynamical conditions. First, a physics-based model, built from simplified electrochemical, membrane dynamics and mass conservation equations, is developed and validated through experimental data. Second, a data-driven, neural network (echo state network) is trained, fitted and tested with the same dataset. Then, the hybrid model is formed as a parallel structure, where the simplified physics-based model and the trained data-driven model are merged through an algorithm based on Gaussian radial basis functions. The merging algorithm compares the output of both single models and assigns weights for computing the prediction of the hybrid result. The proposed hybrid model structure is successfully trained, validated and tested with an experimental dataset originating from fuel cells within an automotive PEMFC stack. The hybrid model is assessed through the mean square error index, with the result of a low tracking error.
first_indexed 2024-03-08T10:58:42Z
format Article
id doaj.art-ec6a8659e80b4751a4458574b25a66de
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-08T10:58:42Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-ec6a8659e80b4751a4458574b25a66de2024-01-26T16:21:59ZengMDPI AGEnergies1996-10732024-01-0117250810.3390/en17020508A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis FunctionsJosé Agustín Aguilar0Damien Chanal1Didier Chamagne2Nadia Yousfi Steiner3Marie-Cécile Péra4Attila Husar5Juan Andrade-Cetto6Institut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, SpainInstitut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, FranceInstitut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, FranceInstitut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, FranceInstitut FEMTO-ST, Université de Franche-Comté, UTBM CNRS, F-90000 Belfort, FranceInstitut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, SpainInstitut de Robòtica i Informàtica Industrial, Consejo Superior de Investigaciones Científicas-Universitat Politèctnica de Catalunya, Llorens Artigas 4-6, 08028 Barcelona, SpainThe goal of increasing efficiency and durability of fuel cells can be achieved through optimal control of their operating conditions. In order to implement such controllers, accurate and computationally efficient fuel cell models must be developed. This work presents a hybrid (physics-based and data-driven), control-oriented model for approximating the output voltage of proton exchange membrane fuel cells (PEMFCs) while operating under dynamical conditions. First, a physics-based model, built from simplified electrochemical, membrane dynamics and mass conservation equations, is developed and validated through experimental data. Second, a data-driven, neural network (echo state network) is trained, fitted and tested with the same dataset. Then, the hybrid model is formed as a parallel structure, where the simplified physics-based model and the trained data-driven model are merged through an algorithm based on Gaussian radial basis functions. The merging algorithm compares the output of both single models and assigns weights for computing the prediction of the hybrid result. The proposed hybrid model structure is successfully trained, validated and tested with an experimental dataset originating from fuel cells within an automotive PEMFC stack. The hybrid model is assessed through the mean square error index, with the result of a low tracking error.https://www.mdpi.com/1996-1073/17/2/508PEMFChybrid modelESNradial basis functions
spellingShingle José Agustín Aguilar
Damien Chanal
Didier Chamagne
Nadia Yousfi Steiner
Marie-Cécile Péra
Attila Husar
Juan Andrade-Cetto
A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions
Energies
PEMFC
hybrid model
ESN
radial basis functions
title A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions
title_full A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions
title_fullStr A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions
title_full_unstemmed A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions
title_short A Hybrid Control-Oriented PEMFC Model Based on Echo State Networks and Gaussian Radial Basis Functions
title_sort hybrid control oriented pemfc model based on echo state networks and gaussian radial basis functions
topic PEMFC
hybrid model
ESN
radial basis functions
url https://www.mdpi.com/1996-1073/17/2/508
work_keys_str_mv AT joseagustinaguilar ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT damienchanal ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT didierchamagne ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT nadiayousfisteiner ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT mariececilepera ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT attilahusar ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT juanandradecetto ahybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT joseagustinaguilar hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT damienchanal hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT didierchamagne hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT nadiayousfisteiner hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT mariececilepera hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT attilahusar hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions
AT juanandradecetto hybridcontrolorientedpemfcmodelbasedonechostatenetworksandgaussianradialbasisfunctions