Using in situ GC-MS for analysis of C<sub>2</sub>&ndash;C<sub>7</sub> volatile organic acids in ambient air of a boreal forest site

An in situ method for studying gas-phase C<sub>2</sub>&ndash;C<sub>7</sub> monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ...

Full description

Bibliographic Details
Main Authors: H. Hellén, S. Schallhart, A. P. Praplan, T. Petäjä, H. Hakola
Format: Article
Language:English
Published: Copernicus Publications 2017-01-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/10/281/2017/amt-10-281-2017.pdf
Description
Summary:An in situ method for studying gas-phase C<sub>2</sub>&ndash;C<sub>7</sub> monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-of-flight mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.
ISSN:1867-1381
1867-8548