Physics of the Aurora

La aurora, ya de por si fascinante por su belleza y la multitud de sus formas, ha resultado aún más fascinante en términos de la física que se puede aprender de su estudio científico. Observaciones in situ de la aurora y de los fenómenos relacionados con ella han sacado a la luz los procesos de la f...

Full description

Bibliographic Details
Main Author: C. G. Falthammar
Format: Article
Language:English
Published: Universidad Nacional Autónoma de México, Instituto de Geofísica 1991-10-01
Series:Geofísica Internacional
Subjects:
Online Access:http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/1227
_version_ 1797828430658535424
author C. G. Falthammar
author_facet C. G. Falthammar
author_sort C. G. Falthammar
collection DOAJ
description La aurora, ya de por si fascinante por su belleza y la multitud de sus formas, ha resultado aún más fascinante en términos de la física que se puede aprender de su estudio científico. Observaciones in situ de la aurora y de los fenómenos relacionados con ella han sacado a la luz los procesos de la física de plasmas, cuya presencia tiene un profundo impacto en nuestro concepto del espacio que nos rodea. La mayoría de estos procesos están relacionados con procesos de aceleraci6n auroral. Aunque se sabe desde hace tiempo que la aurora es causada por electrones de unos cuantos keV que inciden sobre la atmósfera superior, la forma en que estos electrones obtienen su energía ha sido un asunto crucial y controvertido. Actualmente existe una concordancia casi universal en que los campos eléctricos alineados a los campos magnéticos juegan un papel clave, lo que confirma lo predicho por Hannes Alfven hace más de tres décadas. Se han reconocido tres mecanismos principales que hacen posible la existencia de tales campos. Es probable que todos ellos operen en la región de aceleración auroral, pero los papeles que cada uno de ellos juega aún no están determinados. También ha quedado claro que existe una intrincada relación entre estos campos y las diversas formas de interacci6n onda-partícula que involucran campos eléctricos dependientes del tiempo en un amplio rango de frecuencias. Los campos eléctricos alineados con los campos magnéticos tienen consecuencias importantes sobre el comportamiento de un plasma, no solo porque energetizan las partículas sino porque afectan también al comportamiento del plasma mismo, mediante la violación de la "condición de campo congelado". Por lo tanto, el entendimiento de estos campos constituye también una base importante para la comprensi6n de los plasmas cósmicos en general. Las mismas fuerzas que lanzan a los electrones aurorales hacia abajo también lanzan iones positives hacia arriba, al interior de la magnetosfera. Esta expulsión puede ser tan abundante que en ocasiones una gran parte de la magnetosfera está dominada por plasma de oxígeno proveniente de la propia ionosfera de la Tierra, en vez de estarlo por el plasma de hidrógeno del viento solar. Por razones que apenas empezamos a entender, la expulsión es altamente selectiva. En otras palabras, constituye un mecanismo eficiente de separación química, cuya mera existencia era completamente inesperada hasta hace muy poco. tiempo. Un mecanismo similar de separación puede operar en otros plasmas astrofísicos, de modo que la importancia de este descubrimiento podría tener un largo alcance. Alguien ha enfatizado que las lecciones aprendidas en las regiones accesibles del espacio de plasma requieren un "cambia de paradigma" que afecte a toda la astrofísica, la cosmología y la cosmogonía. La mayoría de estas lecciones han provenido del estudio de los problemas relacionados con la aurora, y es posible que aún surjan más.
first_indexed 2024-04-09T13:04:12Z
format Article
id doaj.art-ec78afe0419c4c2ba77eeafc65d6111f
institution Directory Open Access Journal
issn 0016-7169
2954-436X
language English
last_indexed 2024-04-09T13:04:12Z
publishDate 1991-10-01
publisher Universidad Nacional Autónoma de México, Instituto de Geofísica
record_format Article
series Geofísica Internacional
spelling doaj.art-ec78afe0419c4c2ba77eeafc65d6111f2023-05-12T17:11:49ZengUniversidad Nacional Autónoma de México, Instituto de GeofísicaGeofísica Internacional0016-71692954-436X1991-10-0130419721110.22201/igeof.00167169p.1991.30.4.12271227Physics of the AuroraC. G. Falthammar0Department of Plasma Physics, Alfven Laboratory. Royal Institute of Technology, S-100 44 Stockholm, Sfeden.La aurora, ya de por si fascinante por su belleza y la multitud de sus formas, ha resultado aún más fascinante en términos de la física que se puede aprender de su estudio científico. Observaciones in situ de la aurora y de los fenómenos relacionados con ella han sacado a la luz los procesos de la física de plasmas, cuya presencia tiene un profundo impacto en nuestro concepto del espacio que nos rodea. La mayoría de estos procesos están relacionados con procesos de aceleraci6n auroral. Aunque se sabe desde hace tiempo que la aurora es causada por electrones de unos cuantos keV que inciden sobre la atmósfera superior, la forma en que estos electrones obtienen su energía ha sido un asunto crucial y controvertido. Actualmente existe una concordancia casi universal en que los campos eléctricos alineados a los campos magnéticos juegan un papel clave, lo que confirma lo predicho por Hannes Alfven hace más de tres décadas. Se han reconocido tres mecanismos principales que hacen posible la existencia de tales campos. Es probable que todos ellos operen en la región de aceleración auroral, pero los papeles que cada uno de ellos juega aún no están determinados. También ha quedado claro que existe una intrincada relación entre estos campos y las diversas formas de interacci6n onda-partícula que involucran campos eléctricos dependientes del tiempo en un amplio rango de frecuencias. Los campos eléctricos alineados con los campos magnéticos tienen consecuencias importantes sobre el comportamiento de un plasma, no solo porque energetizan las partículas sino porque afectan también al comportamiento del plasma mismo, mediante la violación de la "condición de campo congelado". Por lo tanto, el entendimiento de estos campos constituye también una base importante para la comprensi6n de los plasmas cósmicos en general. Las mismas fuerzas que lanzan a los electrones aurorales hacia abajo también lanzan iones positives hacia arriba, al interior de la magnetosfera. Esta expulsión puede ser tan abundante que en ocasiones una gran parte de la magnetosfera está dominada por plasma de oxígeno proveniente de la propia ionosfera de la Tierra, en vez de estarlo por el plasma de hidrógeno del viento solar. Por razones que apenas empezamos a entender, la expulsión es altamente selectiva. En otras palabras, constituye un mecanismo eficiente de separación química, cuya mera existencia era completamente inesperada hasta hace muy poco. tiempo. Un mecanismo similar de separación puede operar en otros plasmas astrofísicos, de modo que la importancia de este descubrimiento podría tener un largo alcance. Alguien ha enfatizado que las lecciones aprendidas en las regiones accesibles del espacio de plasma requieren un "cambia de paradigma" que afecte a toda la astrofísica, la cosmología y la cosmogonía. La mayoría de estas lecciones han provenido del estudio de los problemas relacionados con la aurora, y es posible que aún surjan más.http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/1227campos eléctricos alineados al campo magnéticoauroraaceleración de partículas
spellingShingle C. G. Falthammar
Physics of the Aurora
Geofísica Internacional
campos eléctricos alineados al campo magnético
aurora
aceleración de partículas
title Physics of the Aurora
title_full Physics of the Aurora
title_fullStr Physics of the Aurora
title_full_unstemmed Physics of the Aurora
title_short Physics of the Aurora
title_sort physics of the aurora
topic campos eléctricos alineados al campo magnético
aurora
aceleración de partículas
url http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/1227
work_keys_str_mv AT cgfalthammar physicsoftheaurora