Analysis of Magnetic Anisotropy and Non-Homogeneity of S235 Ship Structure Steel after Plastic Straining by the Use of Barkhausen Noise

This study investigates the microstructure, residual stress state, and the corresponding magnetic anisotropy of the ship structure samples made of S235 steel after uniaxial tensile deformation. A non-destructive magnetic technique based on Barkhausen noise is employed for fast and reliable monitorin...

Full description

Bibliographic Details
Main Authors: Martin Jurkovič, Tomáš Kalina, Katarína Zgútová, Miroslav Neslušan, Martin Pitoňák
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/20/4588
Description
Summary:This study investigates the microstructure, residual stress state, and the corresponding magnetic anisotropy of the ship structure samples made of S235 steel after uniaxial tensile deformation. A non-destructive magnetic technique based on Barkhausen noise is employed for fast and reliable monitoring of samples exposed to the variable degrees of plastic straining. It was found that the progressively developed plastic straining of the matrix results in an alteration of the easy axis of magnetization, stress anisotropy (expressed in residual stresses state) as well as the corresponding Barkhausen noise emission. Moreover, remarkable non-homogeneity can be found within the plastically strained region, especially when the localized plastic straining takes place.
ISSN:1996-1944