Synthesis and Properties of Mg-Mn-Zn Alloys for Medical Applications

The magnesium alloys Mg-0.5Mn-2Zn, Mg-1.0Mn-2Zn, and Mg-1.5Mn-2Zn (wt.%) with potential biomedical applications, synthesized by powder metallurgy, were investigated to evaluate the influence of manganese content on their microstructure, mechanical properties, and corrosion resistance. The results sh...

Full description

Bibliographic Details
Main Authors: Yunpeng Hu, Delong Dong, Xiangyu Wang, Hongtang Chen, Yang Qiao
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/8/1855
Description
Summary:The magnesium alloys Mg-0.5Mn-2Zn, Mg-1.0Mn-2Zn, and Mg-1.5Mn-2Zn (wt.%) with potential biomedical applications, synthesized by powder metallurgy, were investigated to evaluate the influence of manganese content on their microstructure, mechanical properties, and corrosion resistance. The results show that Mg-Mn-Zn alloys prepared by powder metallurgy reached the maximum compressive stress of 316 MPa and the maximum bending strength of 186 MPa, showing their good resistance to compression and bending, and meeting the mechanical properties required for the human bone plate. With an increase in manganese content, the corrosion resistance improved. In the polarization curve, the maximum positive shift of corrosion potential was 92 mV and the maximum decrease of corrosion current density was 10.2%. It was concluded that, of the alloys tested, Mg-1.0Mn-2.0Zn (wt.%) had the best overall performance, and its maximum compressive stress force and corrosion current density reached 232.42 MPa and 1.32 × 10<sup>−5</sup> A·cm<sup>−2</sup>, respectively, being more suitable for service in human body fluids.
ISSN:1996-1944