Detecting Anomalies in System Logs With a Compact Convolutional Transformer
Computer systems play an important role to ensure the correct functioning of critical systems such as train stations, power stations, emergency systems, and server infrastructures. To ensure the correct functioning and safety of these computer systems, the detection of abnormal system behavior is cr...
Päätekijät: | Rene Larisch, Julien Vitay, Fred H. Hamker |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
IEEE
2023-01-01
|
Sarja: | IEEE Access |
Aiheet: | |
Linkit: | https://ieeexplore.ieee.org/document/10285328/ |
Samankaltaisia teoksia
-
Unsupervised Visual Anomaly Detection Using Self-Supervised Pre-Trained Transformer
Tekijä: Jun-Hyung Kim, et al.
Julkaistu: (2024-01-01) -
Research Progress of Video Anomaly Detection Technology
Tekijä: WU Kaijun, HUANG Tao, WANG Dicong, BAI Chenshuai, TAO Xiaomiao
Julkaistu: (2022-03-01) -
Large-Kernel Central Block Masked Convolution and Channel Attention-Based Reconstruction Network for Anomaly Detection of High-Resolution Hyperspectral Imagery
Tekijä: Qiong Ran, et al.
Julkaistu: (2024-11-01) -
An Enhanced Contrastive Ensemble Learning Method for Anomaly Sound Detection
Tekijä: Jingneng Liao, et al.
Julkaistu: (2025-02-01) -
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
Tekijä: Seungdong Yoa, et al.
Julkaistu: (2021-01-01)