Daylighting Performance of Light Shelf Photovoltaics (LSPV) for Office Buildings in Hot Desert-Like Regions

Visual comfort and energy consumption for lighting in large office buildings is an area of ongoing research, specifically focusing on the development of a daylight control technique (light shelf) combined with solar energy. This study aims to investigate the optimum performance of light shelf photov...

Full description

Bibliographic Details
Main Authors: Abdelhakim Mesloub, Aritra Ghosh
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/22/7959
Description
Summary:Visual comfort and energy consumption for lighting in large office buildings is an area of ongoing research, specifically focusing on the development of a daylight control technique (light shelf) combined with solar energy. This study aims to investigate the optimum performance of light shelf photovoltaics (LSPV) to improve daylight distribution and maximize energy savings for the hot desert-like climate of Saudi Arabia. A radiance simulation analysis was conducted in four phases to evaluate: appropriate height, reflector, internal curved light shelf (LS) angle, and the integrated photovoltaic (PV) with various coverages (25%, 50%, 75%, and entirely external LS). The results revealed that the optimum is achieved at a height of 1.3 m, the addition of a 30 cm reflector on the top of a window with an internal LS curved angle of 10° with 100% coverage (LSPV1, LSPV2). Such an arrangement reduces the energy consumption by more than 85%, eliminates uncomfortable glare, and provides uniform daylight except for during the winter season. Hence, the optimization of the LSPV system is considered to be an effective solution for sustainable buildings.
ISSN:2076-3417