Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes
Numerous existing formulas predicted the ultimate interfacial bond strength in concrete-filled steel tubes (CFST) between steel tubes and concrete core without investigating the whole response under push-out load. In this research, four models are proposed to predict the interfacial behavior in CFST...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-04-01
|
Series: | Buildings |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-5309/12/4/456 |
_version_ | 1797436579283730432 |
---|---|
author | Rabab A. Allouzi Hatem H. Almasaeid Donia G. Salman Raed M. Abendeh Hesham S. Rabayah |
author_facet | Rabab A. Allouzi Hatem H. Almasaeid Donia G. Salman Raed M. Abendeh Hesham S. Rabayah |
author_sort | Rabab A. Allouzi |
collection | DOAJ |
description | Numerous existing formulas predicted the ultimate interfacial bond strength in concrete-filled steel tubes (CFST) between steel tubes and concrete core without investigating the whole response under push-out load. In this research, four models are proposed to predict the interfacial behavior in CFST including the post-peak branch under the push-out loading test based on 157 circular specimens and 105 squared specimens from the literature. Two models (one for circular and one for squared CFST) are developed and calibrated using artificial neural network (ANN) and two models (one for circular and one for squared CFST) are developed based on multivariable regression analysis, analysis of variance (ANOVA). The shape of the specimen (circular or squared), diameter of the tube, thickness of the tube, concrete compressive strength, age at the time of testing, and length of the specimen are the main factors considered. These models are then compared to other existing formulas to verify their capability to better predict the ultimate interfacial bond strength. It is found that the ANN model gives better results for most of the considered data. It is also found that ANN models can predict the overall bond-slip response for the considered dataset. In order to simulate the response of any CFST column using finite element (FE) method, it is vital to have sufficient input data on the overall bond-slip behavior between the interior face of the steel tube and the exterior surface of the concrete core including the post-peak branch. Accordingly, the suggested ANN model is used to generate the required input data related to the cohesive behavior and damage along the interface in ABAQUS model to simulate the response of two circular and two squared CFST columns under concentric compressive load. The results are in good agreement with experimental outcomes. The cohesive criterion and damage interface that are used based on ANN models in FE are found to be sufficient and can be adopted to model CFST columns. |
first_indexed | 2024-03-09T11:04:41Z |
format | Article |
id | doaj.art-ece267a6b10641c8a58ea1301bae3bcb |
institution | Directory Open Access Journal |
issn | 2075-5309 |
language | English |
last_indexed | 2024-03-09T11:04:41Z |
publishDate | 2022-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Buildings |
spelling | doaj.art-ece267a6b10641c8a58ea1301bae3bcb2023-12-01T01:02:43ZengMDPI AGBuildings2075-53092022-04-0112445610.3390/buildings12040456Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel TubesRabab A. Allouzi0Hatem H. Almasaeid1Donia G. Salman2Raed M. Abendeh3Hesham S. Rabayah4Department of Civil Engineering, The University of Jordan, Amman 11942, JordanDepartment of Civil Engineering, Al Albayt University, Al-Mafraq 25113, JordanDepartment of Civil and Infrastructure Engineering, Al-Zaytoonah University of Jordan, Amman 11733, JordanDepartment of Civil and Infrastructure Engineering, Al-Zaytoonah University of Jordan, Amman 11733, JordanDepartment of Civil and Infrastructure Engineering, Al-Zaytoonah University of Jordan, Amman 11733, JordanNumerous existing formulas predicted the ultimate interfacial bond strength in concrete-filled steel tubes (CFST) between steel tubes and concrete core without investigating the whole response under push-out load. In this research, four models are proposed to predict the interfacial behavior in CFST including the post-peak branch under the push-out loading test based on 157 circular specimens and 105 squared specimens from the literature. Two models (one for circular and one for squared CFST) are developed and calibrated using artificial neural network (ANN) and two models (one for circular and one for squared CFST) are developed based on multivariable regression analysis, analysis of variance (ANOVA). The shape of the specimen (circular or squared), diameter of the tube, thickness of the tube, concrete compressive strength, age at the time of testing, and length of the specimen are the main factors considered. These models are then compared to other existing formulas to verify their capability to better predict the ultimate interfacial bond strength. It is found that the ANN model gives better results for most of the considered data. It is also found that ANN models can predict the overall bond-slip response for the considered dataset. In order to simulate the response of any CFST column using finite element (FE) method, it is vital to have sufficient input data on the overall bond-slip behavior between the interior face of the steel tube and the exterior surface of the concrete core including the post-peak branch. Accordingly, the suggested ANN model is used to generate the required input data related to the cohesive behavior and damage along the interface in ABAQUS model to simulate the response of two circular and two squared CFST columns under concentric compressive load. The results are in good agreement with experimental outcomes. The cohesive criterion and damage interface that are used based on ANN models in FE are found to be sufficient and can be adopted to model CFST columns.https://www.mdpi.com/2075-5309/12/4/456concrete-filled steel tubesartificial neural networksanalysis of variancebond-slip behaviorfinite element method |
spellingShingle | Rabab A. Allouzi Hatem H. Almasaeid Donia G. Salman Raed M. Abendeh Hesham S. Rabayah Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes Buildings concrete-filled steel tubes artificial neural networks analysis of variance bond-slip behavior finite element method |
title | Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes |
title_full | Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes |
title_fullStr | Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes |
title_full_unstemmed | Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes |
title_short | Prediction of Bond-Slip Behavior of Circular/Squared Concrete-Filled Steel Tubes |
title_sort | prediction of bond slip behavior of circular squared concrete filled steel tubes |
topic | concrete-filled steel tubes artificial neural networks analysis of variance bond-slip behavior finite element method |
url | https://www.mdpi.com/2075-5309/12/4/456 |
work_keys_str_mv | AT rababaallouzi predictionofbondslipbehaviorofcircularsquaredconcretefilledsteeltubes AT hatemhalmasaeid predictionofbondslipbehaviorofcircularsquaredconcretefilledsteeltubes AT doniagsalman predictionofbondslipbehaviorofcircularsquaredconcretefilledsteeltubes AT raedmabendeh predictionofbondslipbehaviorofcircularsquaredconcretefilledsteeltubes AT heshamsrabayah predictionofbondslipbehaviorofcircularsquaredconcretefilledsteeltubes |