A new, transitional centrosaurine ceratopsid from the Upper Cretaceous Two Medicine Formation of Montana and the evolution of the ‘Styracosaurus-line' dinosaurs

Ceratopsids are among the most ubiquitous dinosaur taxa from the Late Cretaceous terrestrial formations of the Western Interior of North America, comprising two subfamilies, Chasmosaurinae and Centrosaurinae. The Two Medicine Formation of northwestern Montana has produced numerous remains of centros...

Full description

Bibliographic Details
Main Authors: John P. Wilson, Michael J. Ryan, David C. Evans
Format: Article
Language:English
Published: The Royal Society 2020-04-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.200284
Description
Summary:Ceratopsids are among the most ubiquitous dinosaur taxa from the Late Cretaceous terrestrial formations of the Western Interior of North America, comprising two subfamilies, Chasmosaurinae and Centrosaurinae. The Two Medicine Formation of northwestern Montana has produced numerous remains of centrosaurine dinosaurs, which represent three taxa previously considered valid: Rubeosaurus ovatus, Einiosaurus procurvicornis and Achelousaurus horneri. Here, we reassess the previous referral of specimens to Rubeousaurus ovatus and demonstrate that this taxon is represented solely by its holotype specimen, which was first diagnosed as Styracosaurus ovatus. One of the specimens previously referred to ‘Rubeosaurus’ ovatus instead represents a new eucentrosauran centrosaurine taxon diagnosed here, Stellasaurus ancellae gen. et sp. nov. Stellasaurus expresses a unique combination of eucentrosauran centrosaurine characters, including an elongate nasal horncore, diminutive supraorbital horncores, and a parietal bearing straight, elongate P3 processes, semi-elongate P4 processes and non-elongate P5, P6 and P7 processes. Within the stratigraphic succession of Eucentrosaura, Stellasaurus occurs intermediate to Styracosaurus albertensis and Einiosaurus, and likewise reflects intermediate morphology. Assessed within the stratigraphic, geographical, taphonomic, ontogenetic and phylogenetic framework of Unified Frames of Reference, we fail to reject the hypothesis that Stellasaurus ancellae represents a transitional taxon within an anagenetic lineage of eucentrosauran centrosaurines.
ISSN:2054-5703