Simulating the Laurentide Ice Sheet of the Last Glacial Maximum

<p>In the last decades, great effort has been made to reconstruct the Laurentide Ice Sheet (LIS) during the Last Glacial Maximum (LGM; ca. 21 000 years before present, 21 kyr ago). Uncertainties underlying its modelling have led to notable differences in fundamental features such as its maximu...

Full description

Bibliographic Details
Main Authors: D. Moreno-Parada, J. Alvarez-Solas, J. Blasco, M. Montoya, A. Robinson
Format: Article
Language:English
Published: Copernicus Publications 2023-05-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/17/2139/2023/tc-17-2139-2023.pdf
_version_ 1797820336632233984
author D. Moreno-Parada
D. Moreno-Parada
J. Alvarez-Solas
J. Alvarez-Solas
J. Blasco
J. Blasco
J. Blasco
M. Montoya
M. Montoya
A. Robinson
A. Robinson
A. Robinson
author_facet D. Moreno-Parada
D. Moreno-Parada
J. Alvarez-Solas
J. Alvarez-Solas
J. Blasco
J. Blasco
J. Blasco
M. Montoya
M. Montoya
A. Robinson
A. Robinson
A. Robinson
author_sort D. Moreno-Parada
collection DOAJ
description <p>In the last decades, great effort has been made to reconstruct the Laurentide Ice Sheet (LIS) during the Last Glacial Maximum (LGM; ca. 21 000 years before present, 21 kyr ago). Uncertainties underlying its modelling have led to notable differences in fundamental features such as its maximum elevation, extent and total volume. As a result, the uncertainty in ice dynamics and thus in ice extent, volume and ice stream stability remains large. We herein use a higher-order three-dimensional ice sheet model to simulate the LIS under LGM boundary conditions for a number of basal friction formulations of varying complexity. Their consequences for the Laurentide ice streams, configuration, extent and volume are explicitly quantified. Total volume and ice extent generally reach a constant equilibrium value that falls close to prior LIS reconstructions. Simulations exhibit high sensitivity to the dependency of the basal shear stress on the sliding velocity. In particular, a regularised Coulomb friction formulation appears to be the best choice in terms of ice volume and ice stream realism. Pronounced differences are found when the basal friction stress is thermomechanically coupled: the base remains colder, and the LIS volume is lower than in the purely mechanical friction scenario counterpart. Thermomechanical coupling is fundamental for producing rapid ice streaming, yet it leads to a similar ice distribution overall.</p>
first_indexed 2024-03-13T09:37:55Z
format Article
id doaj.art-ecef6e7b7d43411da33c1b82175bd511
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-03-13T09:37:55Z
publishDate 2023-05-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-ecef6e7b7d43411da33c1b82175bd5112023-05-25T11:13:18ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242023-05-01172139215610.5194/tc-17-2139-2023Simulating the Laurentide Ice Sheet of the Last Glacial MaximumD. Moreno-Parada0D. Moreno-Parada1J. Alvarez-Solas2J. Alvarez-Solas3J. Blasco4J. Blasco5J. Blasco6M. Montoya7M. Montoya8A. Robinson9A. Robinson10A. Robinson11Departamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Facultad de Ciencias Físicas, 28040 Madrid, SpainInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Facultad de Ciencias Físicas, 28040 Madrid, SpainInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Facultad de Ciencias Físicas, 28040 Madrid, SpainInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, 28040 Madrid, SpainLaboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BelgiumDepartamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Facultad de Ciencias Físicas, 28040 Madrid, SpainInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, 28040 Madrid, SpainDepartamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Facultad de Ciencias Físicas, 28040 Madrid, SpainInstituto de Geociencias, Consejo Superior de Investigaciones Científicas, Universidad Complutense de Madrid, 28040 Madrid, SpainEarth System Analysis, Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany<p>In the last decades, great effort has been made to reconstruct the Laurentide Ice Sheet (LIS) during the Last Glacial Maximum (LGM; ca. 21 000 years before present, 21 kyr ago). Uncertainties underlying its modelling have led to notable differences in fundamental features such as its maximum elevation, extent and total volume. As a result, the uncertainty in ice dynamics and thus in ice extent, volume and ice stream stability remains large. We herein use a higher-order three-dimensional ice sheet model to simulate the LIS under LGM boundary conditions for a number of basal friction formulations of varying complexity. Their consequences for the Laurentide ice streams, configuration, extent and volume are explicitly quantified. Total volume and ice extent generally reach a constant equilibrium value that falls close to prior LIS reconstructions. Simulations exhibit high sensitivity to the dependency of the basal shear stress on the sliding velocity. In particular, a regularised Coulomb friction formulation appears to be the best choice in terms of ice volume and ice stream realism. Pronounced differences are found when the basal friction stress is thermomechanically coupled: the base remains colder, and the LIS volume is lower than in the purely mechanical friction scenario counterpart. Thermomechanical coupling is fundamental for producing rapid ice streaming, yet it leads to a similar ice distribution overall.</p>https://tc.copernicus.org/articles/17/2139/2023/tc-17-2139-2023.pdf
spellingShingle D. Moreno-Parada
D. Moreno-Parada
J. Alvarez-Solas
J. Alvarez-Solas
J. Blasco
J. Blasco
J. Blasco
M. Montoya
M. Montoya
A. Robinson
A. Robinson
A. Robinson
Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
The Cryosphere
title Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
title_full Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
title_fullStr Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
title_full_unstemmed Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
title_short Simulating the Laurentide Ice Sheet of the Last Glacial Maximum
title_sort simulating the laurentide ice sheet of the last glacial maximum
url https://tc.copernicus.org/articles/17/2139/2023/tc-17-2139-2023.pdf
work_keys_str_mv AT dmorenoparada simulatingthelaurentideicesheetofthelastglacialmaximum
AT dmorenoparada simulatingthelaurentideicesheetofthelastglacialmaximum
AT jalvarezsolas simulatingthelaurentideicesheetofthelastglacialmaximum
AT jalvarezsolas simulatingthelaurentideicesheetofthelastglacialmaximum
AT jblasco simulatingthelaurentideicesheetofthelastglacialmaximum
AT jblasco simulatingthelaurentideicesheetofthelastglacialmaximum
AT jblasco simulatingthelaurentideicesheetofthelastglacialmaximum
AT mmontoya simulatingthelaurentideicesheetofthelastglacialmaximum
AT mmontoya simulatingthelaurentideicesheetofthelastglacialmaximum
AT arobinson simulatingthelaurentideicesheetofthelastglacialmaximum
AT arobinson simulatingthelaurentideicesheetofthelastglacialmaximum
AT arobinson simulatingthelaurentideicesheetofthelastglacialmaximum