The Tubby Torus as a Quotient Group

Let <i>E</i> be any metrizable nuclear locally convex space and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline...

Full description

Bibliographic Details
Main Author: Sidney A. Morris
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/9/1/11
Description
Summary:Let <i>E</i> be any metrizable nuclear locally convex space and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline-formula> the Pontryagin dual group of <i>E</i>. Then the topological group <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline-formula> has the tubby torus (that is, the countably infinite product of copies of the circle group) as a quotient group if and only if <i>E</i> does not have the weak topology. This extends results in the literature related to the Banach&#8722;Mazur separable quotient problem.
ISSN:2075-1680