The Tubby Torus as a Quotient Group

Let <i>E</i> be any metrizable nuclear locally convex space and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline...

Full description

Bibliographic Details
Main Author: Sidney A. Morris
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/9/1/11
_version_ 1818479573400027136
author Sidney A. Morris
author_facet Sidney A. Morris
author_sort Sidney A. Morris
collection DOAJ
description Let <i>E</i> be any metrizable nuclear locally convex space and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline-formula> the Pontryagin dual group of <i>E</i>. Then the topological group <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline-formula> has the tubby torus (that is, the countably infinite product of copies of the circle group) as a quotient group if and only if <i>E</i> does not have the weak topology. This extends results in the literature related to the Banach&#8722;Mazur separable quotient problem.
first_indexed 2024-12-10T11:12:32Z
format Article
id doaj.art-ed01a5c548e143a19537b7dc9218ff7a
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-12-10T11:12:32Z
publishDate 2020-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-ed01a5c548e143a19537b7dc9218ff7a2022-12-22T01:51:22ZengMDPI AGAxioms2075-16802020-01-01911110.3390/axioms9010011axioms9010011The Tubby Torus as a Quotient GroupSidney A. Morris0School of Science, Engineering and Information Technology, Federation University Australia, P.O.B. 663, Ballarat, VIC 3353, AustraliaLet <i>E</i> be any metrizable nuclear locally convex space and <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline-formula> the Pontryagin dual group of <i>E</i>. Then the topological group <inline-formula> <math display="inline"> <semantics> <mover accent="true"> <mi>E</mi> <mo>^</mo> </mover> </semantics> </math> </inline-formula> has the tubby torus (that is, the countably infinite product of copies of the circle group) as a quotient group if and only if <i>E</i> does not have the weak topology. This extends results in the literature related to the Banach&#8722;Mazur separable quotient problem.https://www.mdpi.com/2075-1680/9/1/11torustubby torusseparable quotient problemlocally convex spacenuclear spacebanach spacepontryagin dualityweak topology
spellingShingle Sidney A. Morris
The Tubby Torus as a Quotient Group
Axioms
torus
tubby torus
separable quotient problem
locally convex space
nuclear space
banach space
pontryagin duality
weak topology
title The Tubby Torus as a Quotient Group
title_full The Tubby Torus as a Quotient Group
title_fullStr The Tubby Torus as a Quotient Group
title_full_unstemmed The Tubby Torus as a Quotient Group
title_short The Tubby Torus as a Quotient Group
title_sort tubby torus as a quotient group
topic torus
tubby torus
separable quotient problem
locally convex space
nuclear space
banach space
pontryagin duality
weak topology
url https://www.mdpi.com/2075-1680/9/1/11
work_keys_str_mv AT sidneyamorris thetubbytorusasaquotientgroup
AT sidneyamorris tubbytorusasaquotientgroup