Kernel perfect and critical kernel imperfect digraphs structure

A kernel $N$ of a digraph $D$ is an independent set of vertices of $D$ such that for every $w \in V(D)-N$ there exists an arc from $w$ to $N$. If every induced subdigraph of $D$ has a kernel, $D$ is said to be a kernel perfect digraph. Minimal non-kernel perfect digraph are called critical kernel im...

Full description

Bibliographic Details
Main Authors: Hortensia Galeana-Sánchez, Mucuy-Kak Guevara
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3467/pdf
Description
Summary:A kernel $N$ of a digraph $D$ is an independent set of vertices of $D$ such that for every $w \in V(D)-N$ there exists an arc from $w$ to $N$. If every induced subdigraph of $D$ has a kernel, $D$ is said to be a kernel perfect digraph. Minimal non-kernel perfect digraph are called critical kernel imperfect digraph. If $F$ is a set of arcs of $D$, a semikernel modulo $F$, $S$ of $D$ is an independent set of vertices of $D$ such that for every $z \in V(D)- S$ for which there exists an $Sz-$arc of $D-F$, there also exists an $zS-$arc in $D$. In this talk some structural results concerning critical kernel imperfect and sufficient conditions for a digraph to be a critical kernel imperfect digraph are presented.
ISSN:1365-8050