Classical observables from partial wave amplitudes

Abstract We study the formalism of Kosower-Maybee-O’Connell (KMOC) to extract classical impulse from quantum amplitude in the context of the partial wave expansion of a 2-to-2 elastic scattering. We take two complementary approaches to establish the connection. The first one takes advantage of Clebs...

Full description

Bibliographic Details
Main Authors: Hojin Lee, Sangmin Lee, Subhajit Mazumdar
Format: Article
Language:English
Published: SpringerOpen 2023-06-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP06(2023)096
Description
Summary:Abstract We study the formalism of Kosower-Maybee-O’Connell (KMOC) to extract classical impulse from quantum amplitude in the context of the partial wave expansion of a 2-to-2 elastic scattering. We take two complementary approaches to establish the connection. The first one takes advantage of Clebsch-Gordan relations for the base amplitudes of the partial wave expansion. The second one is a novel adaptation of the traditional saddle point approximation in the semi-classical limit. In the former, an interference between the S-matrix and its conjugate leads to a large degree of cancellation such that the saddle point approximation to handle a rapidly oscillating integral is no longer needed. As an example with a non-orbital angular momentum, we apply our methods to the charge-monopole scattering problem in the probe limit and reproduce both of the two angles characterizing the classical scattering. A spinor basis for the partial wave expansion, a non-relativistic avatar of the spinor-helicity variables, plays a crucial role throughout our computations.
ISSN:1029-8479