KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE

Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrh...

Full description

Bibliographic Details
Main Authors: VANIA RISKASARI YR, I PUTU EKA NILA KENCANA, I KOMANG GDE SUKARSA
Format: Article
Language:English
Published: Universitas Udayana 2023-05-01
Series:E-Jurnal Matematika
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/96413
_version_ 1827895748088299520
author VANIA RISKASARI YR
I PUTU EKA NILA KENCANA
I KOMANG GDE SUKARSA
author_facet VANIA RISKASARI YR
I PUTU EKA NILA KENCANA
I KOMANG GDE SUKARSA
author_sort VANIA RISKASARI YR
collection DOAJ
description Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and  that gives the best accuracy is determined.  The final model using SVM with parameters C = 1 and  = 0,6 is the best model with the accuracy value of 67,86 percent.
first_indexed 2024-03-12T22:25:09Z
format Article
id doaj.art-ed08925cfbef42b0b1584b9e59328f35
institution Directory Open Access Journal
issn 2303-1751
language English
last_indexed 2024-03-12T22:25:09Z
publishDate 2023-05-01
publisher Universitas Udayana
record_format Article
series E-Jurnal Matematika
spelling doaj.art-ed08925cfbef42b0b1584b9e59328f352023-07-22T06:26:03ZengUniversitas UdayanaE-Jurnal Matematika2303-17512023-05-01122879110.24843/MTK.2023.v12.i02.p40496413KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINEVANIA RISKASARI YRI PUTU EKA NILA KENCANAI KOMANG GDE SUKARSACirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and  that gives the best accuracy is determined.  The final model using SVM with parameters C = 1 and  = 0,6 is the best model with the accuracy value of 67,86 percent.https://ojs.unud.ac.id/index.php/mtk/article/view/96413
spellingShingle VANIA RISKASARI YR
I PUTU EKA NILA KENCANA
I KOMANG GDE SUKARSA
KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
E-Jurnal Matematika
title KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
title_full KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
title_fullStr KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
title_full_unstemmed KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
title_short KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE
title_sort klasifikasi penyakit sirosis menggunakan support vector machine
url https://ojs.unud.ac.id/index.php/mtk/article/view/96413
work_keys_str_mv AT vaniariskasariyr klasifikasipenyakitsirosismenggunakansupportvectormachine
AT iputuekanilakencana klasifikasipenyakitsirosismenggunakansupportvectormachine
AT ikomanggdesukarsa klasifikasipenyakitsirosismenggunakansupportvectormachine