(<i>α</i> − <i>ψ</i>) Meir–Keeler Contractions in Bipolar Metric Spaces

In this paper, we introduce the new notion of contravariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mi>ψ</mi><mo>...

Full description

Bibliographic Details
Main Authors: Manoj Kumar, Pankaj Kumar, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Amr Elsonbaty, Stojan Radenović
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/6/1310
Description
Summary:In this paper, we introduce the new notion of contravariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>α</mi><mo>−</mo><mi>ψ</mi><mo>)</mo></mrow></semantics></math></inline-formula> Meir–Keeler contractive mappings by defining <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-orbital admissible mappings and covariant Meir–Keeler contraction in bipolar metric spaces. We prove fixed point theorems for these contractions and also provide some corollaries of main results. An example is also be given in support of our main result. In the end, we also solve an integral equation using our result.
ISSN:2227-7390