Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis

Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>, which determines...

Full description

Bibliographic Details
Main Authors: Marco Riani, Anthony C. Atkinson, Aldo Corbellini, Domenico Perrotta
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/4/399
_version_ 1797571843407740928
author Marco Riani
Anthony C. Atkinson
Aldo Corbellini
Domenico Perrotta
author_facet Marco Riani
Anthony C. Atkinson
Aldo Corbellini
Domenico Perrotta
author_sort Marco Riani
collection DOAJ
description Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>, which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>. We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> leading to more efficient parameter estimates.
first_indexed 2024-03-10T20:46:24Z
format Article
id doaj.art-ed1afc9e43194067803129c435ee43f0
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T20:46:24Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-ed1afc9e43194067803129c435ee43f02023-11-19T20:17:27ZengMDPI AGEntropy1099-43002020-03-0122439910.3390/e22040399Robust Regression with Density Power Divergence: Theory, Comparisons, and Data AnalysisMarco Riani0Anthony C. Atkinson1Aldo Corbellini2Domenico Perrotta3Dipartimento di Scienze Economiche e Aziendale and Interdepartmental Centre for Robust Statistics, Università di Parma, l43125 Parma, ItalyThe London School of Economics, London WC2A 2AE, UKDipartimento di Scienze Economiche e Aziendale and Interdepartmental Centre for Robust Statistics, Università di Parma, l43125 Parma, ItalyEuropean Commission, Joint Research Centre, 21027 Ispra, ItalyMinimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>, which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>. We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey’s biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula> leading to more efficient parameter estimates.https://www.mdpi.com/1099-4300/22/4/399estimation of αmonitoringnumerical minimizationS-estimationTukey’s biweight
spellingShingle Marco Riani
Anthony C. Atkinson
Aldo Corbellini
Domenico Perrotta
Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
Entropy
estimation of α
monitoring
numerical minimization
S-estimation
Tukey’s biweight
title Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
title_full Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
title_fullStr Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
title_full_unstemmed Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
title_short Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis
title_sort robust regression with density power divergence theory comparisons and data analysis
topic estimation of α
monitoring
numerical minimization
S-estimation
Tukey’s biweight
url https://www.mdpi.com/1099-4300/22/4/399
work_keys_str_mv AT marcoriani robustregressionwithdensitypowerdivergencetheorycomparisonsanddataanalysis
AT anthonycatkinson robustregressionwithdensitypowerdivergencetheorycomparisonsanddataanalysis
AT aldocorbellini robustregressionwithdensitypowerdivergencetheorycomparisonsanddataanalysis
AT domenicoperrotta robustregressionwithdensitypowerdivergencetheorycomparisonsanddataanalysis