Long-Distance High-Power Wireless Optical Energy Transmission Based on VECSELs

Wireless charging systems are critical for safely and efficiently recharging mobile electronic devices. Current wireless charging technologies involving inductive coupling, magnetic resonance coupling, and microwave transmission are bulky, require complicated systems, expose users to harmful radiati...

Full description

Bibliographic Details
Main Authors: Zhuo Zhang, Jianwei Zhang, Yuxiang Gong, Yinli Zhou, Xing Zhang, Chao Chen, Hao Wu, Yongyi Chen, Li Qin, Yongqiang Ning, Lijun Wang
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/10/1475
Description
Summary:Wireless charging systems are critical for safely and efficiently recharging mobile electronic devices. Current wireless charging technologies involving inductive coupling, magnetic resonance coupling, and microwave transmission are bulky, require complicated systems, expose users to harmful radiation, and have very short energy transmission distances. Herein, we report on a long-distance optical power transmission system by optimizing the external cavity structure of semiconductor lasers for laser charging applications. An ultra-long stable oscillating laser cavity with a transmission distance of 10 m is designed. The optimal laser cavity design is determined by simulating the structural parameters for stable operation, and an improved laser cavity that produces an output of 2.589 W at a transmission distance of 150 cm is fabricated. The peak power attenuation when the transmission distance increases from 50 to 150 cm is only approximately 6.4%, which proves that this wireless power transfer scheme based on a vertical external cavity surface-emitting laser can be used to realize ultra-long-distance power transmission. The proposed wireless energy transmission scheme based on a VECSEL laser is the first of its kind to report a 1.5 m transmission distance output power that exceeds 2.5 W. Compared with other wireless energy transmission technologies, this simple, compact, and safe long-distance wireless laser energy transmission system is more suitable for indoor charging applications.
ISSN:2073-4352