Tripled best proximity point in complete metric spaces
In this paper, we introduce a new type of contraction to seek the existence of tripled best proximity point results. Here, using the new contraction and P-property, we generalize and extend results of W. Shatanawi and A. Pitea and prove the existence and uniqueness of some tripled best proximity poi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-03-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/math.2020.18.issue-1/math-2020-0016/math-2020-0016.xml?format=INT |
_version_ | 1830358260105871360 |
---|---|
author | Rohen Yumnam Mlaiki Nabil |
author_facet | Rohen Yumnam Mlaiki Nabil |
author_sort | Rohen Yumnam |
collection | DOAJ |
description | In this paper, we introduce a new type of contraction to seek the existence of tripled best proximity point results. Here, using the new contraction and P-property, we generalize and extend results of W. Shatanawi and A. Pitea and prove the existence and uniqueness of some tripled best proximity point results. Examples are also given to support our results. |
first_indexed | 2024-12-20T02:37:51Z |
format | Article |
id | doaj.art-ed2136c3f70c45c29606ff13c3e53916 |
institution | Directory Open Access Journal |
issn | 2391-5455 |
language | English |
last_indexed | 2024-12-20T02:37:51Z |
publishDate | 2020-03-01 |
publisher | De Gruyter |
record_format | Article |
series | Open Mathematics |
spelling | doaj.art-ed2136c3f70c45c29606ff13c3e539162022-12-21T19:56:24ZengDe GruyterOpen Mathematics2391-54552020-03-0118120421010.1515/math-2020-0016math-2020-0016Tripled best proximity point in complete metric spacesRohen Yumnam0Mlaiki Nabil1Department of Mathematics, National Institute of Technology Manipur, Imphal, IndiaDepartment of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi ArabiaIn this paper, we introduce a new type of contraction to seek the existence of tripled best proximity point results. Here, using the new contraction and P-property, we generalize and extend results of W. Shatanawi and A. Pitea and prove the existence and uniqueness of some tripled best proximity point results. Examples are also given to support our results.http://www.degruyter.com/view/j/math.2020.18.issue-1/math-2020-0016/math-2020-0016.xml?format=INTbest proximity pointalmost contractionbest proximity coupled pointtripled best proximity pointmetric space47h1054h25 |
spellingShingle | Rohen Yumnam Mlaiki Nabil Tripled best proximity point in complete metric spaces Open Mathematics best proximity point almost contraction best proximity coupled point tripled best proximity point metric space 47h10 54h25 |
title | Tripled best proximity point in complete metric spaces |
title_full | Tripled best proximity point in complete metric spaces |
title_fullStr | Tripled best proximity point in complete metric spaces |
title_full_unstemmed | Tripled best proximity point in complete metric spaces |
title_short | Tripled best proximity point in complete metric spaces |
title_sort | tripled best proximity point in complete metric spaces |
topic | best proximity point almost contraction best proximity coupled point tripled best proximity point metric space 47h10 54h25 |
url | http://www.degruyter.com/view/j/math.2020.18.issue-1/math-2020-0016/math-2020-0016.xml?format=INT |
work_keys_str_mv | AT rohenyumnam tripledbestproximitypointincompletemetricspaces AT mlaikinabil tripledbestproximitypointincompletemetricspaces |