Nonnegative Matrix Factorization with Joint Regularization of Manifold Learning and Pairwise Constraints

In order to handle semi-supervised clustering scenarios where only part of the pairwise constraint information is available in the target dataset, on the basis of nonnegative matrix factorization (NMF) architecture, this paper proposes a nonnegative matrix factorization-based clustering algorithm us...

Full description

Bibliographic Details
Main Author: CAO Jiawei, QIAN Pengjiang
Format: Article
Language:zho
Published: Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press 2020-07-01
Series:Jisuanji kexue yu tansuo
Subjects:
Online Access:http://fcst.ceaj.org/CN/abstract/abstract2270.shtml
Description
Summary:In order to handle semi-supervised clustering scenarios where only part of the pairwise constraint information is available in the target dataset, on the basis of nonnegative matrix factorization (NMF) architecture, this paper proposes a nonnegative matrix factorization-based clustering algorithm using joint regularization of manifold learning and pairwise constraints (NMF-JRMLPC) by learning given pairwise constraint knowledge and using manifold regularization theory. On the one hand, graph Laplacian is introduced to depict the manifold structure information contained in a large number of unlabeled samples, and on the other hand, the must-link or cannot-link pair-constraint rules among known samples are integrated into the target optimization design, which greatly improves the clustering performance of the algorithm. In addition, the [l2,1] norm based loss function design also helps to optimize the robustness of NMF-JRMLPC. Experimental results on eight real datasets confirm the validity of the proposed method.
ISSN:1673-9418