Model-based patient matching for in-parallel pressure-controlled ventilation

Abstract Background Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no mea...

Full description

Bibliographic Details
Main Authors: Jin Wai Wong, Yeong Shiong Chiew, Thomas Desaive, J. Geoffrey Chase
Format: Article
Language:English
Published: BMC 2022-02-01
Series:BioMedical Engineering OnLine
Subjects:
Online Access:https://doi.org/10.1186/s12938-022-00983-y
Description
Summary:Abstract Background Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV. Methods The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation. Results The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care. Conclusion This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.
ISSN:1475-925X