A new deep sparse autoencoder for community detection in complex networks
Abstract Feature dimension reduction in the community detection is an important research topic in complex networks and has attracted many research efforts in recent years. However, most of existing algorithms developed for this purpose take advantage of classical mechanisms, which may be long experi...
Main Authors: | Rong Fei, Jingyuan Sha, Qingzheng Xu, Bo Hu, Kan Wang, Shasha Li |
---|---|
Format: | Article |
Jezik: | English |
Izdano: |
SpringerOpen
2020-05-01
|
Serija: | EURASIP Journal on Wireless Communications and Networking |
Teme: | |
Online dostop: | http://link.springer.com/article/10.1186/s13638-020-01706-4 |
Podobne knjige/članki
-
Detection of Pitting in Gears Using a Deep Sparse Autoencoder
od: Yongzhi Qu, et al.
Izdano: (2017-05-01) -
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
od: Qi Li, et al.
Izdano: (2022-08-01) -
Cable Incipient Fault Identification with a Sparse Autoencoder and a Deep Belief Network
od: Ning Liu, et al.
Izdano: (2019-09-01) -
Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder
od: Maria G. F. Coutinho, et al.
Izdano: (2019-01-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
od: Fahad Almuqhim, et al.
Izdano: (2021-04-01)