A new deep sparse autoencoder for community detection in complex networks
Abstract Feature dimension reduction in the community detection is an important research topic in complex networks and has attracted many research efforts in recent years. However, most of existing algorithms developed for this purpose take advantage of classical mechanisms, which may be long experi...
Main Authors: | Rong Fei, Jingyuan Sha, Qingzheng Xu, Bo Hu, Kan Wang, Shasha Li |
---|---|
格式: | 文件 |
语言: | English |
出版: |
SpringerOpen
2020-05-01
|
丛编: | EURASIP Journal on Wireless Communications and Networking |
主题: | |
在线阅读: | http://link.springer.com/article/10.1186/s13638-020-01706-4 |
相似书籍
-
Detection of Pitting in Gears Using a Deep Sparse Autoencoder
由: Yongzhi Qu, et al.
出版: (2017-05-01) -
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
由: Qi Li, et al.
出版: (2022-08-01) -
Cable Incipient Fault Identification with a Sparse Autoencoder and a Deep Belief Network
由: Ning Liu, et al.
出版: (2019-09-01) -
Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder
由: Maria G. F. Coutinho, et al.
出版: (2019-01-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
由: Fahad Almuqhim, et al.
出版: (2021-04-01)