Flow Field and Temperature Field of Water-Cooling-Type Magnetic Coupling
Abstract At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating water-cooled coupling of the coupler. Focusing on rotating water cool...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-07-01
|
Series: | Chinese Journal of Mechanical Engineering |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s10033-019-0371-5 |
Summary: | Abstract At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating water-cooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF (Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed‚ and so on‚ of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling effect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six different positions when 50 kW and 70 kW thermal losses differ are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure‚ and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design. |
---|---|
ISSN: | 1000-9345 2192-8258 |