Role of Filler Content and Morphology in LLZO/PEO Membranes
Polymer electrolytes containing Li-ion conducting fillers are among the extensively investigated materials for the development of solid-state Li metal batteries. The practical realization of these electrolytes is, however, impeded by their low Li-ion conductivity, which is related to the filler and...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-10-01
|
Series: | Frontiers in Energy Research |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fenrg.2021.711610/full |
_version_ | 1818738485700329472 |
---|---|
author | Mir Mehraj Ud Din Mir Mehraj Ud Din Mir Mehraj Ud Din M. Häusler S. M. Fischer S. M. Fischer K. Ratzenböck K. Ratzenböck F. F. Chamasemani I. Hanghofer V. Henninge R. Brunner C. Slugovc C. Slugovc D. Rettenwander D. Rettenwander D. Rettenwander |
author_facet | Mir Mehraj Ud Din Mir Mehraj Ud Din Mir Mehraj Ud Din M. Häusler S. M. Fischer S. M. Fischer K. Ratzenböck K. Ratzenböck F. F. Chamasemani I. Hanghofer V. Henninge R. Brunner C. Slugovc C. Slugovc D. Rettenwander D. Rettenwander D. Rettenwander |
author_sort | Mir Mehraj Ud Din |
collection | DOAJ |
description | Polymer electrolytes containing Li-ion conducting fillers are among the extensively investigated materials for the development of solid-state Li metal batteries. The practical realization of these electrolytes is, however, impeded by their low Li-ion conductivity, which is related to the filler and the interplay between the filler and the polymer. Therefore, we performed an in-depth analysis on the influence of the filler content (0, 10, and 20 wt%) and filler morphology (particles and nanowires) on the electrical and electrochemical properties of the PEO-based composite electrolyte using a wide spectrum of characterization techniques, such as 3D micro-X-ray computed tomography, cross-sectional scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry, impedance spectroscopy, and galvanostatic cycling. The studies reveal that the filler materials are well distributed within the membranes, without any indications for the formation of agglomerates. For 10 wt% filler, a decrease in the crystallinity compared to PEO was observed, in contrast to 20 wt% filler showing an increase in crystallinity. Impedance spectroscopic studies on the Li-ion conductivity of the membranes have shown that the change in the Li-ion conductivity is solely related to the change in the crystallinity, rather than to the participation of LLZO as an active transport mediator. The PEO membranes containing 10 wt% LLZO have been tested in terms of their rate capability in symmetrical Li cells by galvanostatic cycling. A critical current density of up to 1 mA cm−2 at 60°C was observed. |
first_indexed | 2024-12-18T01:09:42Z |
format | Article |
id | doaj.art-ed4f342a58074c10aa8c6beeeb83c6b9 |
institution | Directory Open Access Journal |
issn | 2296-598X |
language | English |
last_indexed | 2024-12-18T01:09:42Z |
publishDate | 2021-10-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Energy Research |
spelling | doaj.art-ed4f342a58074c10aa8c6beeeb83c6b92022-12-21T21:26:09ZengFrontiers Media S.A.Frontiers in Energy Research2296-598X2021-10-01910.3389/fenrg.2021.711610711610Role of Filler Content and Morphology in LLZO/PEO MembranesMir Mehraj Ud Din0Mir Mehraj Ud Din1Mir Mehraj Ud Din2M. Häusler3S. M. Fischer4S. M. Fischer5K. Ratzenböck6K. Ratzenböck7F. F. Chamasemani8I. Hanghofer9V. Henninge10R. Brunner11C. Slugovc12C. Slugovc13D. Rettenwander14D. Rettenwander15D. Rettenwander16Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInternational Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaDepartment of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaChristian Doppler Laboratory for Organocatalysis in Polymerization, Graz University of Technology, Graz, AustriaInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaChristian Doppler Laboratory for Organocatalysis in Polymerization, Graz University of Technology, Graz, AustriaMaterials Center Leoben, Forschung GmbH, Leoben, AustriaAVL List GmbH, Graz, AustriaAVL List GmbH, Graz, AustriaMaterials Center Leoben, Forschung GmbH, Leoben, AustriaInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaChristian Doppler Laboratory for Organocatalysis in Polymerization, Graz University of Technology, Graz, AustriaDepartment of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInternational Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaPolymer electrolytes containing Li-ion conducting fillers are among the extensively investigated materials for the development of solid-state Li metal batteries. The practical realization of these electrolytes is, however, impeded by their low Li-ion conductivity, which is related to the filler and the interplay between the filler and the polymer. Therefore, we performed an in-depth analysis on the influence of the filler content (0, 10, and 20 wt%) and filler morphology (particles and nanowires) on the electrical and electrochemical properties of the PEO-based composite electrolyte using a wide spectrum of characterization techniques, such as 3D micro-X-ray computed tomography, cross-sectional scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry, impedance spectroscopy, and galvanostatic cycling. The studies reveal that the filler materials are well distributed within the membranes, without any indications for the formation of agglomerates. For 10 wt% filler, a decrease in the crystallinity compared to PEO was observed, in contrast to 20 wt% filler showing an increase in crystallinity. Impedance spectroscopic studies on the Li-ion conductivity of the membranes have shown that the change in the Li-ion conductivity is solely related to the change in the crystallinity, rather than to the participation of LLZO as an active transport mediator. The PEO membranes containing 10 wt% LLZO have been tested in terms of their rate capability in symmetrical Li cells by galvanostatic cycling. A critical current density of up to 1 mA cm−2 at 60°C was observed.https://www.frontiersin.org/articles/10.3389/fenrg.2021.711610/fullcomposite polymer electrolytesflexible electrolyte membranesLi garnetsolid-state batterieshigh critical current density |
spellingShingle | Mir Mehraj Ud Din Mir Mehraj Ud Din Mir Mehraj Ud Din M. Häusler S. M. Fischer S. M. Fischer K. Ratzenböck K. Ratzenböck F. F. Chamasemani I. Hanghofer V. Henninge R. Brunner C. Slugovc C. Slugovc D. Rettenwander D. Rettenwander D. Rettenwander Role of Filler Content and Morphology in LLZO/PEO Membranes Frontiers in Energy Research composite polymer electrolytes flexible electrolyte membranes Li garnet solid-state batteries high critical current density |
title | Role of Filler Content and Morphology in LLZO/PEO Membranes |
title_full | Role of Filler Content and Morphology in LLZO/PEO Membranes |
title_fullStr | Role of Filler Content and Morphology in LLZO/PEO Membranes |
title_full_unstemmed | Role of Filler Content and Morphology in LLZO/PEO Membranes |
title_short | Role of Filler Content and Morphology in LLZO/PEO Membranes |
title_sort | role of filler content and morphology in llzo peo membranes |
topic | composite polymer electrolytes flexible electrolyte membranes Li garnet solid-state batteries high critical current density |
url | https://www.frontiersin.org/articles/10.3389/fenrg.2021.711610/full |
work_keys_str_mv | AT mirmehrajuddin roleoffillercontentandmorphologyinllzopeomembranes AT mirmehrajuddin roleoffillercontentandmorphologyinllzopeomembranes AT mirmehrajuddin roleoffillercontentandmorphologyinllzopeomembranes AT mhausler roleoffillercontentandmorphologyinllzopeomembranes AT smfischer roleoffillercontentandmorphologyinllzopeomembranes AT smfischer roleoffillercontentandmorphologyinllzopeomembranes AT kratzenbock roleoffillercontentandmorphologyinllzopeomembranes AT kratzenbock roleoffillercontentandmorphologyinllzopeomembranes AT ffchamasemani roleoffillercontentandmorphologyinllzopeomembranes AT ihanghofer roleoffillercontentandmorphologyinllzopeomembranes AT vhenninge roleoffillercontentandmorphologyinllzopeomembranes AT rbrunner roleoffillercontentandmorphologyinllzopeomembranes AT cslugovc roleoffillercontentandmorphologyinllzopeomembranes AT cslugovc roleoffillercontentandmorphologyinllzopeomembranes AT drettenwander roleoffillercontentandmorphologyinllzopeomembranes AT drettenwander roleoffillercontentandmorphologyinllzopeomembranes AT drettenwander roleoffillercontentandmorphologyinllzopeomembranes |