Role of Filler Content and Morphology in LLZO/PEO Membranes

Polymer electrolytes containing Li-ion conducting fillers are among the extensively investigated materials for the development of solid-state Li metal batteries. The practical realization of these electrolytes is, however, impeded by their low Li-ion conductivity, which is related to the filler and...

Full description

Bibliographic Details
Main Authors: Mir Mehraj Ud Din, M. Häusler, S. M. Fischer, K. Ratzenböck, F. F. Chamasemani, I. Hanghofer, V. Henninge, R. Brunner, C. Slugovc, D. Rettenwander
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-10-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2021.711610/full
_version_ 1818738485700329472
author Mir Mehraj Ud Din
Mir Mehraj Ud Din
Mir Mehraj Ud Din
M. Häusler
S. M. Fischer
S. M. Fischer
K. Ratzenböck
K. Ratzenböck
F. F. Chamasemani
I. Hanghofer
V. Henninge
R. Brunner
C. Slugovc
C. Slugovc
D. Rettenwander
D. Rettenwander
D. Rettenwander
author_facet Mir Mehraj Ud Din
Mir Mehraj Ud Din
Mir Mehraj Ud Din
M. Häusler
S. M. Fischer
S. M. Fischer
K. Ratzenböck
K. Ratzenböck
F. F. Chamasemani
I. Hanghofer
V. Henninge
R. Brunner
C. Slugovc
C. Slugovc
D. Rettenwander
D. Rettenwander
D. Rettenwander
author_sort Mir Mehraj Ud Din
collection DOAJ
description Polymer electrolytes containing Li-ion conducting fillers are among the extensively investigated materials for the development of solid-state Li metal batteries. The practical realization of these electrolytes is, however, impeded by their low Li-ion conductivity, which is related to the filler and the interplay between the filler and the polymer. Therefore, we performed an in-depth analysis on the influence of the filler content (0, 10, and 20 wt%) and filler morphology (particles and nanowires) on the electrical and electrochemical properties of the PEO-based composite electrolyte using a wide spectrum of characterization techniques, such as 3D micro-X-ray computed tomography, cross-sectional scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry, impedance spectroscopy, and galvanostatic cycling. The studies reveal that the filler materials are well distributed within the membranes, without any indications for the formation of agglomerates. For 10 wt% filler, a decrease in the crystallinity compared to PEO was observed, in contrast to 20 wt% filler showing an increase in crystallinity. Impedance spectroscopic studies on the Li-ion conductivity of the membranes have shown that the change in the Li-ion conductivity is solely related to the change in the crystallinity, rather than to the participation of LLZO as an active transport mediator. The PEO membranes containing 10 wt% LLZO have been tested in terms of their rate capability in symmetrical Li cells by galvanostatic cycling. A critical current density of up to 1 mA cm−2 at 60°C was observed.
first_indexed 2024-12-18T01:09:42Z
format Article
id doaj.art-ed4f342a58074c10aa8c6beeeb83c6b9
institution Directory Open Access Journal
issn 2296-598X
language English
last_indexed 2024-12-18T01:09:42Z
publishDate 2021-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Energy Research
spelling doaj.art-ed4f342a58074c10aa8c6beeeb83c6b92022-12-21T21:26:09ZengFrontiers Media S.A.Frontiers in Energy Research2296-598X2021-10-01910.3389/fenrg.2021.711610711610Role of Filler Content and Morphology in LLZO/PEO MembranesMir Mehraj Ud Din0Mir Mehraj Ud Din1Mir Mehraj Ud Din2M. Häusler3S. M. Fischer4S. M. Fischer5K. Ratzenböck6K. Ratzenböck7F. F. Chamasemani8I. Hanghofer9V. Henninge10R. Brunner11C. Slugovc12C. Slugovc13D. Rettenwander14D. Rettenwander15D. Rettenwander16Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInternational Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaDepartment of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaChristian Doppler Laboratory for Organocatalysis in Polymerization, Graz University of Technology, Graz, AustriaInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaChristian Doppler Laboratory for Organocatalysis in Polymerization, Graz University of Technology, Graz, AustriaMaterials Center Leoben, Forschung GmbH, Leoben, AustriaAVL List GmbH, Graz, AustriaAVL List GmbH, Graz, AustriaMaterials Center Leoben, Forschung GmbH, Leoben, AustriaInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaChristian Doppler Laboratory for Organocatalysis in Polymerization, Graz University of Technology, Graz, AustriaDepartment of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInternational Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Trondheim, NorwayInstitute of Chemistry and Technology of Materials (NAWI Graz), Graz University of Technology, Graz, AustriaPolymer electrolytes containing Li-ion conducting fillers are among the extensively investigated materials for the development of solid-state Li metal batteries. The practical realization of these electrolytes is, however, impeded by their low Li-ion conductivity, which is related to the filler and the interplay between the filler and the polymer. Therefore, we performed an in-depth analysis on the influence of the filler content (0, 10, and 20 wt%) and filler morphology (particles and nanowires) on the electrical and electrochemical properties of the PEO-based composite electrolyte using a wide spectrum of characterization techniques, such as 3D micro-X-ray computed tomography, cross-sectional scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry, impedance spectroscopy, and galvanostatic cycling. The studies reveal that the filler materials are well distributed within the membranes, without any indications for the formation of agglomerates. For 10 wt% filler, a decrease in the crystallinity compared to PEO was observed, in contrast to 20 wt% filler showing an increase in crystallinity. Impedance spectroscopic studies on the Li-ion conductivity of the membranes have shown that the change in the Li-ion conductivity is solely related to the change in the crystallinity, rather than to the participation of LLZO as an active transport mediator. The PEO membranes containing 10 wt% LLZO have been tested in terms of their rate capability in symmetrical Li cells by galvanostatic cycling. A critical current density of up to 1 mA cm−2 at 60°C was observed.https://www.frontiersin.org/articles/10.3389/fenrg.2021.711610/fullcomposite polymer electrolytesflexible electrolyte membranesLi garnetsolid-state batterieshigh critical current density
spellingShingle Mir Mehraj Ud Din
Mir Mehraj Ud Din
Mir Mehraj Ud Din
M. Häusler
S. M. Fischer
S. M. Fischer
K. Ratzenböck
K. Ratzenböck
F. F. Chamasemani
I. Hanghofer
V. Henninge
R. Brunner
C. Slugovc
C. Slugovc
D. Rettenwander
D. Rettenwander
D. Rettenwander
Role of Filler Content and Morphology in LLZO/PEO Membranes
Frontiers in Energy Research
composite polymer electrolytes
flexible electrolyte membranes
Li garnet
solid-state batteries
high critical current density
title Role of Filler Content and Morphology in LLZO/PEO Membranes
title_full Role of Filler Content and Morphology in LLZO/PEO Membranes
title_fullStr Role of Filler Content and Morphology in LLZO/PEO Membranes
title_full_unstemmed Role of Filler Content and Morphology in LLZO/PEO Membranes
title_short Role of Filler Content and Morphology in LLZO/PEO Membranes
title_sort role of filler content and morphology in llzo peo membranes
topic composite polymer electrolytes
flexible electrolyte membranes
Li garnet
solid-state batteries
high critical current density
url https://www.frontiersin.org/articles/10.3389/fenrg.2021.711610/full
work_keys_str_mv AT mirmehrajuddin roleoffillercontentandmorphologyinllzopeomembranes
AT mirmehrajuddin roleoffillercontentandmorphologyinllzopeomembranes
AT mirmehrajuddin roleoffillercontentandmorphologyinllzopeomembranes
AT mhausler roleoffillercontentandmorphologyinllzopeomembranes
AT smfischer roleoffillercontentandmorphologyinllzopeomembranes
AT smfischer roleoffillercontentandmorphologyinllzopeomembranes
AT kratzenbock roleoffillercontentandmorphologyinllzopeomembranes
AT kratzenbock roleoffillercontentandmorphologyinllzopeomembranes
AT ffchamasemani roleoffillercontentandmorphologyinllzopeomembranes
AT ihanghofer roleoffillercontentandmorphologyinllzopeomembranes
AT vhenninge roleoffillercontentandmorphologyinllzopeomembranes
AT rbrunner roleoffillercontentandmorphologyinllzopeomembranes
AT cslugovc roleoffillercontentandmorphologyinllzopeomembranes
AT cslugovc roleoffillercontentandmorphologyinllzopeomembranes
AT drettenwander roleoffillercontentandmorphologyinllzopeomembranes
AT drettenwander roleoffillercontentandmorphologyinllzopeomembranes
AT drettenwander roleoffillercontentandmorphologyinllzopeomembranes